Search results
Results from the WOW.Com Content Network
The thermal conductivity of a material is a measure of its ability to conduct heat.It is commonly denoted by , , or and is measured in W·m −1 ·K −1.. Heat transfer occurs at a lower rate in materials of low thermal conductivity than in materials of high thermal conductivity.
In thermal conductivity, k is defined as "the quantity of heat, Q, transmitted in time (t) through a thickness (L), in a direction normal to a surface of area (A), due to a temperature difference (ΔT) [...]". Thermal conductivity is a material property that is primarily dependent on the medium's phase, temperature, density, and molecular bonding.
Work and heat are not thermodynamic properties, but rather process quantities: flows of energy across a system boundary. Systems do not contain work, but can perform work, and likewise, in formal thermodynamics, systems do not contain heat, but can transfer heat.
In heat transfer, the thermal conductivity of a substance, k, is an intensive property that indicates its ability to conduct heat. For most materials, the amount of heat conducted varies (usually non-linearly) with temperature. [1] Thermal conductivity is often measured with laser flash analysis. Alternative measurements are also established.
The thermal conductivity is sometimes a constant, otherwise an average value of conductivity for the soil condition between the surface and the point at depth is used. δ T {\displaystyle \delta T} is the temperature difference ( temperature gradient ) between the two points in the soil between which the heat flux density is to be calculated.
Conduction heat flux q k for ideal gas is derived with the gas kinetic theory or the Boltzmann transport equations, and the thermal conductivity is =, -, where u f 2 1/2 is the RMS (root mean square) thermal velocity (3k B T/m from the MB distribution function, m: atomic mass) and τ f-f is the relaxation time (or intercollision time period ...
α is the thermal diffusivity, D is the mass diffusivity, λ is the thermal conductivity, ρ is the density, D im is the mixture-averaged diffusion coefficient, c p is the specific heat capacity at constant pressure. In the field of fluid mechanics, many sources define the Lewis number to be the inverse of the above definition. [3] [4]
where is the thermal conductivity of the material, = (,) is the temperature, and = (,) is a vector field that represents the magnitude and direction of the heat flow at the point of space and time . If the medium is a thin rod of uniform section and material, the position x is a single coordinate and the heat flow q = q ( t , x ) {\displaystyle ...