Search results
Results from the WOW.Com Content Network
Tyrosine phosphorylation is the addition of a phosphate (PO 4 3−) group to the amino acid tyrosine on a protein. It is one of the main types of protein phosphorylation . This transfer is made possible through enzymes called tyrosine kinases .
Tyrosine phosphorylation is a fast, reversible reaction, and one of the major regulatory mechanisms in signal transduction. Cell growth, differentiation, migration, and metabolic homeostasis are cellular processes maintained by tyrosine phosphorylation. The function of protein tyrosine kinases and protein-tyrosine phosphatase counterbalances ...
Tyrosine phosphorylation activity also increases or decreases in conjunction with changes in cell composition and growth regulation. In this way, a certain transformation exhibited by cells is dependent on a role that tyrosine kinase demonstrates. [5] Protein tyrosine kinases, have a major role in the activation of lymphocytes. In addition ...
In its phosphorylated form, tyrosine is called phosphotyrosine. Tyrosine phosphorylation is considered to be one of the key steps in signal transduction and regulation of enzymatic activity. Phosphotyrosine can be detected through specific antibodies. Tyrosine residues may also be modified by the addition of a sulfate group, a process known as ...
A second regulatory phosphorylation site in Src is Tyr-416. This is an autophosphorylation site in the activation loop. It was found that a phosphorylation of Tyr-416 and Tyr-416 can suppressing the transforming ability of the activating Tyr-527→Phe mutation by Tyr-416→Phe mutation leads to maximal stimulation of kinase activity. [11]
[10] [12] The structure of PTPmu suggests that it can regulate cell adhesion and migration using its extracellular cell adhesion molecule features, while also regulating the level of tyrosine phosphorylation inside of cells using its catalytic tyrosine phosphatase domain. A series of reviews have been written about RPTPs including PTPmu.
Phosphorylation of sugars is often the first stage in their catabolism. Phosphorylation allows cells to accumulate sugars because the phosphate group prevents the molecules from diffusing back across their transporter. Phosphorylation of glucose is a key reaction in sugar metabolism.
ITAMs are important for signal transduction, mainly in immune cells. They are found in the cytoplasmic tails of non-catalytic tyrosine-phosphorylated receptors [7] such as the CD3 and ζ-chains of the T cell receptor complex, the CD79-alpha and -beta chains of the B cell receptor complex, and certain Fc receptors.