enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gaussian integer - Wikipedia

    en.wikipedia.org/wiki/Gaussian_integer

    In number theory, a Gaussian integer is a complex number whose real and imaginary parts are both integers. The Gaussian integers, with ordinary addition and multiplication of complex numbers , form an integral domain , usually written as Z [ i ] {\displaystyle \mathbf {Z} [i]} or Z [ i ] . {\displaystyle \mathbb {Z} [i].} [ 1 ]

  3. Fermat's theorem on sums of two squares - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem_on_sums_of...

    Fermat's theorem on sums of two squares is strongly related with the theory of Gaussian primes.. A Gaussian integer is a complex number + such that a and b are integers. The norm (+) = + of a Gaussian integer is an integer equal to the square of the absolute value of the Gaussian integer.

  4. Unique factorization domain - Wikipedia

    en.wikipedia.org/wiki/Unique_factorization_domain

    In particular, the integers (also see Fundamental theorem of arithmetic), the Gaussian integers and the Eisenstein integers are UFDs. If R is a UFD, then so is R[X], the ring of polynomials with coefficients in R. Unless R is a field, R[X] is not a principal ideal domain. By induction, a polynomial ring in any number of variables over any UFD ...

  5. Table of Gaussian integer factorizations - Wikipedia

    en.wikipedia.org/wiki/Table_of_Gaussian_Integer...

    A Gaussian integer is either the zero, one of the four units (±1, ±i), a Gaussian prime or composite. The article is a table of Gaussian Integers x + iy followed either by an explicit factorization or followed by the label (p) if the integer is a Gaussian prime.

  6. Hurwitz quaternion - Wikipedia

    en.wikipedia.org/wiki/Hurwitz_quaternion

    The ordinary integers and the Gaussian integers allow a division with remainder or Euclidean division. For positive integers N and D, there is always a quotient Q and a nonnegative remainder R such that N = QD + R where R < D. For complex or Gaussian integers N = a + ib and D = c + id, with the norm N(D) > 0, there always exist Q = p + iq and R ...

  7. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    The greatest common divisor (GCD) of integers a and b, at least one of which is nonzero, is the greatest positive integer d such that d is a divisor of both a and b; that is, there are integers e and f such that a = de and b = df, and d is the largest such integer.

  8. Gauss's lemma (number theory) - Wikipedia

    en.wikipedia.org/wiki/Gauss's_lemma_(number_theory)

    Generalizations of Gauss's lemma can be used to compute higher power residue symbols. In his second monograph on biquadratic reciprocity, [4]: §§69–71 Gauss used a fourth-power lemma to derive the formula for the biquadratic character of 1 + i in Z[i], the ring of Gaussian integers.

  9. Number theory - Wikipedia

    en.wikipedia.org/wiki/Number_theory

    Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions.German mathematician Carl Friedrich Gauss (1777–1855) said, "Mathematics is the queen of the sciences—and number theory is the queen of mathematics."