Search results
Results from the WOW.Com Content Network
The overall reflection of a layer structure is the sum of an infinite number of reflections. The transfer-matrix method is based on the fact that, according to Maxwell's equations , there are simple continuity conditions for the electric field across boundaries from one medium to the next.
Each optical element (surface, interface, mirror, or beam travel) is described by a 2 × 2 ray transfer matrix which operates on a vector describing an incoming light ray to calculate the outgoing ray. Multiplication of the successive matrices thus yields a concise ray transfer matrix describing the entire optical system.
the diffraction angle for a given reflection, the reciprocal lattice of the crystal. It was conceived by Paul Peter Ewald, a German physicist and crystallographer. [1] Ewald himself spoke of the sphere of reflection. [2] It is often simplified to the two-dimensional "Ewald's circle" model or may be referred to as the Ewald sphere.
Body essence is an entity invariant to interface reflection, and has two degrees of freedom. The Gaussian coefficient generalizes a conventional simple thresholding scheme, and it provides detailed use of body color similarity.
The wave vector of the outgoing electron k hl corresponds to an allowed diffraction condition, and the difference between the components parallel to the surface of the two wave vectors is the reciprocal lattice vector G hl. Diffraction conditions are satisfied where the rods of reciprocal lattice intersect the Ewald's sphere.
This is because, for a perfect case, each intersection test would divide the possibilities by two, and result in a binary tree type structure. Spatial subdivision methods, discussed below, try to achieve this. Furthermore, this acceleration structure makes the ray-tracing computation output-sensitive. I.e. the complexity of the ray intersection ...
A reflection about a line or plane that does not go through the origin is not a linear transformation — it is an affine transformation — as a 4×4 affine transformation matrix, it can be expressed as follows (assuming the normal is a unit vector): [′ ′ ′] = [] [] where = for some point on the plane, or equivalently, + + + =.
Time-resolved simulation of a pulse reflecting from a Bragg mirror. A distributed Bragg reflector (DBR) is a reflector used in waveguides, such as optical fibers.It is a structure formed from multiple layers of alternating materials with different refractive index, or by periodic variation of some characteristic (such as height) of a dielectric waveguide, resulting in periodic variation in the ...