enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fermi level - Wikipedia

    en.wikipedia.org/wiki/Fermi_level

    The Fermi level does not necessarily correspond to an actual energy level (in an insulator the Fermi level lies in the band gap), nor does it require the existence of a band structure. Nonetheless, the Fermi level is a precisely defined thermodynamic quantity, and differences in Fermi level can be measured simply with a voltmeter.

  3. Band diagram - Wikipedia

    en.wikipedia.org/wiki/Band_diagram

    Band diagram for Schottky barrier at equilibrium Band diagram for semiconductor heterojunction at equilibrium. In solid-state physics of semiconductors, a band diagram is a diagram plotting various key electron energy levels (Fermi level and nearby energy band edges) as a function of some spatial dimension, which is often denoted x. [1]

  4. Electronic band structure - Wikipedia

    en.wikipedia.org/wiki/Electronic_band_structure

    µ is the total chemical potential of electrons, or Fermi level (in semiconductor physics, this quantity is more often denoted E F). The Fermi level of a solid is directly related to the voltage on that solid, as measured with a voltmeter. Conventionally, in band structure plots the Fermi level is taken to be the zero of energy (an arbitrary ...

  5. Fermi energy - Wikipedia

    en.wikipedia.org/wiki/Fermi_energy

    The Fermi energy is only defined at absolute zero, while the Fermi level is defined for any temperature. The Fermi energy is an energy difference (usually corresponding to a kinetic energy), whereas the Fermi level is a total energy level including kinetic energy and potential energy.

  6. Metal–semiconductor junction - Wikipedia

    en.wikipedia.org/wiki/Metal–semiconductor_junction

    Band diagram for metal-semiconductor junction at zero bias (equilibrium). Shown is the graphical definition of the Schottky barrier height, Φ B, for an n-type semiconductor as the difference between the interfacial conduction band edge E C and Fermi level E F.

  7. Template:Band structure filling diagram - Wikipedia

    en.wikipedia.org/wiki/Template:Band_structure...

    The shade follows the Fermi–Dirac distribution (black: all states filled, white: no state filled). In metals and semimetals the Fermi level E F lies inside at least one band. In insulators and semiconductors the Fermi level is inside a band gap ; however, in semiconductors the bands are near enough to the Fermi level to be thermally populated ...

  8. Valence and conduction bands - Wikipedia

    en.wikipedia.org/wiki/Valence_and_conduction_bands

    In solid-state physics, the valence band and conduction band are the bands closest to the Fermi level, and thus determine the electrical conductivity of the solid. In nonmetals, the valence band is the highest range of electron energies in which electrons are normally present at absolute zero temperature, while the conduction band is the lowest range of vacant electronic states.

  9. Quasi Fermi level - Wikipedia

    en.wikipedia.org/wiki/Quasi_Fermi_level

    When a semiconductor is in thermal equilibrium, the distribution function of the electrons at the energy level of E is presented by a Fermi–Dirac distribution function. In this case the Fermi level is defined as the level in which the probability of occupation of electron at that energy is 1 ⁄ 2. In thermal equilibrium, there is no need to ...