Search results
Results from the WOW.Com Content Network
LAH is most commonly used for the reduction of esters [28] [29] and carboxylic acids [30] to primary alcohols; prior to the advent of LAH this was a difficult conversion involving sodium metal in boiling ethanol (the Bouveault-Blanc reduction). Aldehydes and ketones [31] can also be reduced to alcohols by LAH, but this is usually done using ...
A well-known method to synthesize enantiopure alcohols by ketone reduction is the Midland Alpine borane reduction, named after its inventor Professor M. Mark Midland. [20] The strategy uses a chiral organoborane, derived from the hydroboration of alpha-pinene by 9-BBN, to differentiate enantiotopic faces of a ketone.
The final step in the reduction of carboxylic acids and esters is hydrolysis of the aluminium alcoxide. [8] Esters (and amides) are more easily reduced than the parent carboxylic acids. Their reduction affords alcohols and amines, respectively. [9] The idealized equation for the reduction of an ester by lithium aluminium hydride is:
A few substrates, including diaryl ketones, [9] diarylalkenes, [10] and anthracene, [11] are known to undergo reduction by single-electron transfer pathways with lithium aluminium hydride. Metal alkoxylaluminium hydride reagents are well characterized in a limited number of cases. [12]
The Luche reduction can be conducted chemoselectively toward ketone in the presence of aldehydes or towards α,β-unsaturated ketones in the presence of a non-conjugated ketone. [5] An enone forms an allylic alcohol in a 1,2-addition, and the competing conjugate 1,4-addition is suppressed.
The selectivity of this reagent is illustrated by its reduction of all three methylcyclohexanones to the less stable methylcyclohexanols in >98% yield. Under certain conditions, L-selectride can selectively reduce enones by conjugate addition of hydride, owing to the greater steric hindrance the bulky hydride reagent experiences at the carbonyl ...
Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids. [1] A variety of oxidants can be used.
The McMurry reaction is an organic reaction in which two ketone or aldehyde groups are coupled to form an alkene using a titanium chloride compound such as titanium(III) chloride and a reducing agent. The reaction is named after its co-discoverer, John E. McMurry.