enow.com Web Search

  1. Ads

    related to: applying properties of negative exponents

Search results

  1. Results from the WOW.Com Content Network
  2. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Laws_of_exponents

    If n is a negative integer, is defined only if x has a multiplicative inverse. [37] In this case, the inverse of x is denoted x −1, and x n is defined as (). Exponentiation with integer exponents obeys the following laws, for x and y in the algebraic structure, and m and n integers:

  3. Exponential function - Wikipedia

    en.wikipedia.org/wiki/Exponential_function

    This "conceptual" definition requires a uniqueness proof and an existence proof, but it allows an easy derivation of the main properties of the exponential function. Uniqueness: If ⁠ f ( x ) {\displaystyle f(x)} ⁠ and ⁠ g ( x ) {\displaystyle g(x)} ⁠ are two functions satisfying the above definition, then the derivative of ⁠ f / g ...

  4. Reciprocal rule - Wikipedia

    en.wikipedia.org/wiki/Reciprocal_rule

    In calculus, the reciprocal rule gives the derivative of the reciprocal of a function f in terms of the derivative of f.The reciprocal rule can be used to show that the power rule holds for negative exponents if it has already been established for positive exponents.

  5. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    These are the three main logarithm laws/rules/principles, [3] from which the other properties listed above can be proven. Each of these logarithm properties correspond to their respective exponent law, and their derivations/proofs will hinge on those facts. There are multiple ways to derive/prove each logarithm law – this is just one possible ...

  6. Descartes' rule of signs - Wikipedia

    en.wikipedia.org/wiki/Descartes'_rule_of_signs

    To find the number of negative roots, change the signs of the coefficients of the terms with odd exponents, i.e., apply Descartes' rule of signs to the polynomial = + + This polynomial has two sign changes, as the sequence of signs is (−, +, +, −) , meaning that this second polynomial has two or zero positive roots; thus the original ...

  7. Matrix exponential - Wikipedia

    en.wikipedia.org/wiki/Matrix_exponential

    The matrix exponential satisfies the following properties. [2] We begin with the properties that are immediate consequences of the definition as a power series: e 0 = I; exp(X T) = (exp X) T, where X T denotes the transpose of X. exp(X ∗) = (exp X) ∗, where X ∗ denotes the conjugate transpose of X. If Y is invertible then e YXY −1 = Ye ...

  8. Modular exponentiation - Wikipedia

    en.wikipedia.org/wiki/Modular_exponentiation

    Modular exponentiation can be performed with a negative exponent e by finding the modular multiplicative inverse d of b modulo m using the extended Euclidean algorithm. That is: c = b e mod m = d −e mod m, where e < 0 and b ⋅ d ≡ 1 (mod m). Modular exponentiation is efficient to compute, even for very large integers.

  9. Root of unity - Wikipedia

    en.wikipedia.org/wiki/Root_of_unity

    This is also true for negative exponents. In particular, the reciprocal of an n th root of unity is its complex conjugate, and is also an n th root of unity: [8] = = = ¯. If z is an n th root of unity and a ≡ b (mod n) then z a = z b.

  1. Ads

    related to: applying properties of negative exponents