enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Constitutive equation - Wikipedia

    en.wikipedia.org/wiki/Constitutive_equation

    The first constitutive equation (constitutive law) was developed by Robert Hooke and is known as Hooke's law.It deals with the case of linear elastic materials.Following this discovery, this type of equation, often called a "stress-strain relation" in this example, but also called a "constitutive assumption" or an "equation of state" was commonly used.

  3. Newtonian fluid - Wikipedia

    en.wikipedia.org/wiki/Newtonian_fluid

    This constitutive equation is also called the Newton law of viscosity. The total stress tensor σ {\displaystyle {\boldsymbol {\sigma }}} can always be decomposed as the sum of the isotropic stress tensor and the deviatoric stress tensor ( σ ′ {\displaystyle {\boldsymbol {\sigma }}'} ):

  4. Continuum mechanics - Wikipedia

    en.wikipedia.org/wiki/Continuum_mechanics

    The concept of a continuum underlies the mathematical framework for studying large-scale forces and deformations in materials. Although materials are composed of discrete atoms and molecules, separated by empty space or microscopic cracks and crystallographic defects, physical phenomena can often be modeled by considering a substance distributed throughout some region of space.

  5. Viscoelasticity - Wikipedia

    en.wikipedia.org/wiki/Viscoelasticity

    The constitutive relation is expressed as a linear first-order differential equation: = + ˙ This model represents a solid undergoing reversible, viscoelastic strain. Upon application of a constant stress, the material deforms at a decreasing rate, asymptotically approaching the steady-state strain.

  6. Derivation of the Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the_Navier...

    For completion, one must make hypotheses on the forms of τ and p, that is, one needs a constitutive law for the stress tensor which can be obtained for specific fluid families and on the pressure. Some of these hypotheses lead to the Euler equations (fluid dynamics) , other ones lead to the Navier–Stokes equations.

  7. Transport phenomena - Wikipedia

    en.wikipedia.org/wiki/Transport_phenomena

    Mass transfer in a system is governed by Fick's first law: 'Diffusion flux from higher concentration to lower concentration is proportional to the gradient of the concentration of the substance and the diffusivity of the substance in the medium.' Mass transfer can take place due to different driving forces. Some of them are: [12]

  8. Mass balance - Wikipedia

    en.wikipedia.org/wiki/Mass_balance

    The concept is the same as for a large mass balance, but it is performed in the context of a limiting system (for example, one can consider the limiting case in time or, more commonly, volume). A differential mass balance is used to generate differential equations that can provide an effective tool for modelling and understanding the target system.

  9. Turbulence modeling - Wikipedia

    en.wikipedia.org/wiki/Turbulence_modeling

    This simple model is the basis for the "law of the wall", which is a surprisingly accurate model for wall-bounded, attached (not separated) flow fields with small pressure gradients. More general turbulence models have evolved over time, with most modern turbulence models given by field equations similar to the Navier–Stokes equations .