enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Uniform tiling - Wikipedia

    en.wikipedia.org/wiki/Uniform_tiling

    In geometry, a uniform tiling is a tessellation of the plane by regular polygon faces with the restriction of being vertex-transitive. Uniform tilings can exist in both the Euclidean plane and hyperbolic plane. Uniform tilings are related to the finite uniform polyhedra; these can be considered uniform tilings of the sphere.

  3. List of Euclidean uniform tilings - Wikipedia

    en.wikipedia.org/wiki/List_of_euclidean_uniform...

    An example of uniform tiling in the Archeological Museum of Seville, Sevilla, Spain: rhombitrihexagonal tiling Regular tilings and their duals drawn by Max Brückner in Vielecke und Vielflache (1900) This table shows the 11 convex uniform tilings (regular and semiregular) of the Euclidean plane , and their dual tilings.

  4. Lists of uniform tilings on the sphere, plane, and hyperbolic ...

    en.wikipedia.org/wiki/Lists_of_uniform_tilings...

    In geometry, many uniform tilings on sphere, euclidean plane, and hyperbolic plane can be made by Wythoff construction within a fundamental triangle, (p q r), defined by internal angles as π/p, π/q, and π/r. Special cases are right triangles (p q 2).

  5. Euclidean tilings by convex regular polygons - Wikipedia

    en.wikipedia.org/wiki/Euclidean_tilings_by...

    k-uniform tilings with the same vertex figures can be further identified by their wallpaper group symmetry. 1-uniform tilings include 3 regular tilings, and 8 semiregular ones, with 2 or more types of regular polygon faces. There are 20 2-uniform tilings, 61 3-uniform tilings, 151 4-uniform tilings, 332 5-uniform tilings and 673 6-uniform tilings.

  6. Tessellation - Wikipedia

    en.wikipedia.org/wiki/Tessellation

    It is possible to tessellate in non-Euclidean geometries such as hyperbolic geometry. A uniform tiling in the hyperbolic plane (that may be regular, quasiregular, or semiregular) is an edge-to-edge filling of the hyperbolic plane, with regular polygons as faces; these are vertex-transitive (transitive on its vertices), and isogonal (there is an ...

  7. Category:Euclidean tilings - Wikipedia

    en.wikipedia.org/wiki/Category:Euclidean_tilings

    List of Euclidean uniform tilings; Uniform tiling symmetry mutations; W. Wang tile This page was last edited on 5 November 2014, at 22:50 (UTC). ...

  8. List of aperiodic sets of tiles - Wikipedia

    en.wikipedia.org/wiki/List_of_aperiodic_sets_of...

    In geometry, a tiling is a partition of the plane (or any other geometric setting) into closed sets (called tiles), without gaps or overlaps (other than the boundaries of the tiles). [1] A tiling is considered periodic if there exist translations in two independent directions which map the tiling onto itself.

  9. 33344-33434 tiling - Wikipedia

    en.wikipedia.org/wiki/33344-33434_tiling

    In geometry of the Euclidean plane, a 33344-33434 tiling is one of two of 20 2-uniform tilings of the Euclidean plane by regular polygons. They contains regular triangle and square faces, arranged in two vertex configuration: 3.3.3.4.4 and 3.3.4.3.4. [2] The first has triangles in groups of 3 and square in groups of 1 and 2.