Search results
Results from the WOW.Com Content Network
The main objective of interval arithmetic is to provide a simple way of calculating upper and lower bounds of a function's range in one or more variables. These endpoints are not necessarily the true supremum or infimum of a range since the precise calculation of those values can be difficult or impossible; the bounds only need to contain the function's range as a subset.
Range reduction (also argument reduction, domain-spltting) is the first step for any function, after checks for unusual values (infinity and NaN) are performed.The goal here is to reduce the domain of the argument for the polynomial to process, using the function's symmetry and periodicity (if any), setting flags to indicate e.g. whether to negate the result in the end (if needed).
For example, the arithmetic mean of 0° and 360° is 180°, which is misleading because 360° equals 0° modulo a full cycle. [1] As another example, the "average time" between 11 PM and 1 AM is either midnight or noon, depending on whether the two times are part of a single night or part of a single calendar day.
The value of the function at a maximum point is called the maximum value of the function, denoted (()), and the value of the function at a minimum point is called the minimum value of the function, (denoted (()) for clarity). Symbolically, this can be written as follows:
For example, saying "the absolute value is denoted by | · |" is perhaps clearer than saying that it is denoted as | |. ± (plus–minus sign) 1. Denotes either a plus sign or a minus sign. 2. Denotes the range of values that a measured quantity may have; for example, 10 ± 2 denotes an unknown value that lies between 8 and 12.
In mathematics, particularly measure theory, the essential range, or the set of essential values, of a function is intuitively the 'non-negligible' range of the function: It does not change between two functions that are equal almost everywhere. One way of thinking of the essential range of a function is the set on which the range of the ...
Given a function that accepts an array, a range query (,) on an array = [,..,] takes two indices and and returns the result of when applied to the subarray [, …,].For example, for a function that returns the sum of all values in an array, the range query (,) returns the sum of all values in the range [,].
The smallest value of i > 0 for which the tortoise and hare point to equal values is the desired value ν. The following Python code shows how this idea may be implemented as an algorithm. def floyd ( f , x0 ) -> ( int , int ): """Floyd's cycle detection algorithm."""