Search results
Results from the WOW.Com Content Network
Mesoscale may refer to: Mesoscale meteorology; Mesoscopic scale in physics; Mesoscale manufacturing; Mesoscale eddies This page was last edited on ...
Mesoscale meteorology is the study of weather systems and processes at horizontal scales of approximately 5 kilometres (3 mi) to several hundred kilometres. It is smaller than synoptic-scale systems (1,000 km or larger) but larger than microscale (less than 1 km).
Mesoscale and Microscale Meteorology laboratory (MMM) Research Applications Laboratory (RAL) Programs. Advanced Study Program (ASP) Integrated Science Program (ISP) NCAR's service to the universities and larger geosciences community is reinforced by the offerings of UCAR's community programs. [12] [13]
The applied science of mesoscopic physics deals with the potential of building nanodevices. Mesoscopic physics also addresses fundamental practical problems which occur when a macroscopic object is miniaturized, as with the miniaturization of transistors in semiconductor electronics. The mechanical, chemical, and electronic properties of ...
Mesoscale manufacturing is the process of creating components and products in a range of approximately from 0.1mm to 5mm with high accuracy and precision using a wide variety of engineering materials. Mesomanufacturing processes are filling the gap between macro- and micromanufacturing processes and overlaps both of them (see picture).
Hazardous chemicals present physical and/or health threats to workers in clinical, industrial, and academic laboratories. Laboratory chemicals include cancer-causing agents (carcinogens), toxins (e.g., those affecting the liver, kidney, and nervous system), irritants, corrosives, sensitizers, as well as agents that act on the blood system or damage the lungs, skin, eyes, or mucous membranes.
In meteorology and climatology, a mesonet, portmanteau of mesoscale network, is a network of automated weather and, often also including environmental monitoring stations, designed to observe mesoscale meteorological phenomena and/or microclimates. [3] [4] Dry lines, squall lines, and sea breezes are examples of phenomena observed by mesonets.
randomness does not enter. These approximations of the macroscale model can all be refined in analogous microscale models. On the first approximation listed above—that birth and death rates are constant—the macroscale model of Figure 1 is exactly the mean of a large number of stochastic trials with the growth rate fluctuating randomly in ...