Search results
Results from the WOW.Com Content Network
In probability theory and statistics, the law of the unconscious statistician, or LOTUS, is a theorem which expresses the expected value of a function g(X) of a random variable X in terms of g and the probability distribution of X. The form of the law depends on the type of random variable X in question.
This is also called a "change of variable" and is in practice used to generate a random variable of arbitrary shape f g(X) = f Y using a known (for instance, uniform) random number generator. It is tempting to think that in order to find the expected value E(g(X)), one must first find the probability density f g(X) of the new random variable Y ...
A random variable (also called random quantity, aleatory variable, or stochastic variable) is a mathematical formalization of a quantity or object which depends on random events. [1] The term 'random variable' in its mathematical definition refers to neither randomness nor variability [ 2 ] but instead is a mathematical function in which
An absolutely continuous random variable is a random variable whose probability distribution is absolutely continuous. There are many examples of absolutely continuous probability distributions: normal , uniform , chi-squared , and others .
the product of two random variables is a random variable; addition and multiplication of random variables are both commutative; and; there is a notion of conjugation of random variables, satisfying (XY) * = Y * X * and X ** = X for all random variables X,Y and coinciding with complex conjugation if X is a constant.
For a random variable following the continuous uniform distribution, the expected value is = +, and the variance is = (). For the special case a = − b , {\displaystyle a=-b,} the probability density function of the continuous uniform distribution is:
Indeed, even when the random variable does not have a density, the characteristic function may be seen as the Fourier transform of the measure corresponding to the random variable. Another related concept is the representation of probability distributions as elements of a reproducing kernel Hilbert space via the kernel embedding of distributions .
The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.