enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Order topology - Wikipedia

    en.wikipedia.org/wiki/Order_topology

    Though the subspace topology of Y = {−1} ∪ {1/n } n∈N in the section above is shown not to be generated by the induced order on Y, it is nonetheless an order topology on Y; indeed, in the subspace topology every point is isolated (i.e., singleton {y} is open in Y for every y in Y), so the subspace topology is the discrete topology on Y (the topology in which every subset of Y is open ...

  3. Order topology (functional analysis) - Wikipedia

    en.wikipedia.org/wiki/Order_topology_(functional...

    In mathematics, specifically in order theory and functional analysis, the order topology of an ordered vector space (,) is the finest locally convex topological vector space (TVS) topology on for which every order interval is bounded, where an order interval in is a set of the form [,]:= {:} where and belong to . [1]

  4. Order theory - Wikipedia

    en.wikipedia.org/wiki/Order_theory

    The finest order consistent topology is the Scott topology, which is coarser than the Alexandrov topology. A third important topology in this spirit is the Lawson topology . There are close connections between these topologies and the concepts of order theory.

  5. Comparison of topologies - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_topologies

    A topology on a set may be defined as the collection of subsets which are considered to be "open". (An alternative definition is that it is the collection of subsets which are considered "closed". These two ways of defining the topology are essentially equivalent because the complement of an open set is closed and vice versa. In the following ...

  6. Total order - Wikipedia

    en.wikipedia.org/wiki/Total_order

    We can use these open intervals to define a topology on any ordered set, the order topology. When more than one order is being used on a set one talks about the order topology induced by a particular order. For instance if N is the natural numbers, < is less than and > greater than we might refer to the order topology on N induced by < and the ...

  7. Glossary of order theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_order_theory

    See Scott topology. Scott topology. For a poset P, a subset O is Scott-open if it is an upper set and all directed sets D that have a supremum in O have non-empty intersection with O. The set of all Scott-open sets forms a topology, the Scott topology. Semilattice. A semilattice is a poset in which either all finite non-empty joins (suprema) or ...

  8. Topology - Wikipedia

    en.wikipedia.org/wiki/Topology

    A three-dimensional model of a figure-eight knot.The figure-eight knot is a prime knot and has an Alexander–Briggs notation of 4 1.. Topology (from the Greek words τόπος, 'place, location', and λόγος, 'study') is the branch of mathematics concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling ...

  9. Glossary of general topology - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_general_topology

    Absolutely closed See H-closed Accessible See . Accumulation point See limit point. Alexandrov topology The topology of a space X is an Alexandrov topology (or is finitely generated) if arbitrary intersections of open sets in X are open, or equivalently, if arbitrary unions of closed sets are closed, or, again equivalently, if the open sets are the upper sets of a poset.