enow.com Web Search

  1. Ads

    related to: understanding chain rule of calculus definition geometry worksheet printable

Search results

  1. Results from the WOW.Com Content Network
  2. Chain rule - Wikipedia

    en.wikipedia.org/wiki/Chain_rule

    All extensions of calculus have a chain rule. In most of these, the formula remains the same, though the meaning of that formula may be vastly different. One generalization is to manifolds. In this situation, the chain rule represents the fact that the derivative of f ∘ g is the composite of the derivative of f and the derivative of g. This ...

  3. Glossary of calculus - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_calculus

    chain rule The chain rule is a formula for computing the derivative of the composition of two or more functions. That is, if f and g are functions, then the chain rule expresses the derivative of their composition f ∘ g (the function which maps x to f(g(x)) ) in terms of the derivatives of f and g and the product of functions as follows:

  4. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/wiki/Jacobian_matrix_and...

    Composable differentiable functions f : R n → R m and g : R m → R k satisfy the chain rule, namely () = (()) for x in R n. The Jacobian of the gradient of a scalar function of several variables has a special name: the Hessian matrix , which in a sense is the " second derivative " of the function in question.

  5. Inverse function rule - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_rule

    In calculus, the inverse function rule is a formula that expresses the derivative of the inverse of a bijective and differentiable function f in terms of the derivative of f. More precisely, if the inverse of f {\displaystyle f} is denoted as f − 1 {\displaystyle f^{-1}} , where f − 1 ( y ) = x {\displaystyle f^{-1}(y)=x} if and only if f ...

  6. Pushforward (differential) - Wikipedia

    en.wikipedia.org/wiki/Pushforward_(differential)

    It follows from the definition that the differential of a composite is the composite of the differentials (i.e., functorial behaviour). This is the chain rule for smooth maps. Also, the differential of a local diffeomorphism is a linear isomorphism of tangent spaces.

  7. Parametrization (geometry) - Wikipedia

    en.wikipedia.org/wiki/Parametrization_(geometry)

    In mathematics, and more specifically in geometry, parametrization (or parameterization; also parameterisation, parametrisation) is the process of finding parametric equations of a curve, a surface, or, more generally, a manifold or a variety, defined by an implicit equation. The inverse process is called implicitization. [1] "

  8. Triple product rule - Wikipedia

    en.wikipedia.org/wiki/Triple_product_rule

    Suppose a function f(x, y, z) = 0, where x, y, and z are functions of each other. Write the total differentials of the variables = + = + Substitute dy into dx = [() + ()] + By using the chain rule one can show the coefficient of dx on the right hand side is equal to one, thus the coefficient of dz must be zero () + = Subtracting the second term and multiplying by its inverse gives the triple ...

  9. Geometric calculus - Wikipedia

    en.wikipedia.org/wiki/Geometric_calculus

    In mathematics, geometric calculus extends geometric algebra to include differentiation and integration. The formalism is powerful and can be shown to reproduce other mathematical theories including vector calculus , differential geometry , and differential forms .

  1. Ads

    related to: understanding chain rule of calculus definition geometry worksheet printable