Search results
Results from the WOW.Com Content Network
This is a collection of temperature conversion formulas and comparisons among eight different temperature scales, several of which have long been obsolete.. Temperatures on scales that either do not share a numeric zero or are nonlinearly related cannot correctly be mathematically equated (related using the symbol =), and thus temperatures on different scales are more correctly described as ...
The Rankine scale is used in engineering systems where heat computations are done using degrees Fahrenheit. [3] The symbol for degrees Rankine is °R [2] (or °Ra if necessary to distinguish it from the Rømer and Réaumur scales). By analogy with the SI unit kelvin, some authors term the unit Rankine, omitting the degree symbol. [4] [5]
In trigonometry, the gradian – also known as the gon (from Ancient Greek γωνία (gōnía) 'angle'), grad, or grade [1] – is a unit of measurement of an angle, defined as one-hundredth of the right angle; in other words, 100 gradians is equal to 90 degrees.
For an exact conversion between degrees Fahrenheit and Celsius, and kelvins of a specific temperature point, the following formulas can be applied. Here, f is the value in degrees Fahrenheit, c the value in degrees Celsius, and k the value in kelvins: f °F to c °C: c = f − 32 / 1.8 c °C to f °F: f = c × 1.8 + 32
A degree (in full, a degree of arc, arc degree, or arcdegree), usually denoted by ° (the degree symbol), is a measurement of a plane angle in which one full rotation is 360 degrees. [ 4 ] It is not an SI unit —the SI unit of angular measure is the radian —but it is mentioned in the SI brochure as an accepted unit . [ 5 ]
An example for which it cannot be used is the conversion between the Celsius scale and the Kelvin scale (or the Fahrenheit scale). Between degrees Celsius and kelvins, there is a constant difference rather than a constant ratio, while between degrees Celsius and degrees Fahrenheit there is neither a constant difference nor a constant ratio.
Additionally, an angle that is a rational multiple of radians is constructible if and only if, when it is expressed as / radians, where a and b are relatively prime integers, the prime factorization of the denominator, b, is the product of some power of two and any number of distinct Fermat primes (a Fermat prime is a prime number one greater ...
One radian is defined as the angle at the center of a circle in a plane that subtends an arc whose length equals the radius of the circle. [6] More generally, the magnitude in radians of a subtended angle is equal to the ratio of the arc length to the radius of the circle; that is, =, where θ is the magnitude in radians of the subtended angle, s is arc length, and r is radius.