Search results
Results from the WOW.Com Content Network
Round to nearest, ties to even – rounds to the nearest value; if the number falls midway, it is rounded to the nearest value with an even least significant digit. Round to nearest, ties away from zero (or ties to away ) – rounds to the nearest value; if the number falls midway, it is rounded to the nearest value above (for positive numbers ...
In a guideline issued in mid-1966, [49] the U.S. Office of the Federal Coordinator for Meteorology determined that weather data should be rounded to the nearest round number, with the "round half up" tie-breaking rule. For example, 1.5 rounded to integer should become 2, and −1.5 should become −1.
underflow, set if the rounded value is tiny (as specified in IEEE 754) and inexact (or maybe limited to if it has denormalization loss, as per the 1985 version of IEEE 754), returning a subnormal value including the zeros. overflow, set if the absolute value of the rounded value is too large to be represented. An infinity or maximal finite ...
Round-to-nearest: () is set to the nearest floating-point number to . When there is a tie, the floating-point number whose last stored digit is even (also, the last digit, in binary form, is equal to 0) is used. For IEEE standard where the base is , this means when there is a tie it is rounded so that the last digit is equal to .
Double-precision floating-point format (sometimes called FP64 or float64) is a floating-point number format, usually occupying 64 bits in computer memory; it represents a wide range of numeric values by using a floating radix point.
Here we start with 0 in single precision (binary32) and repeatedly add 1 until the operation does not change the value. Since the significand for a single-precision number contains 24 bits, the first integer that is not exactly representable is 2 24 +1, and this value rounds to 2 24 in round to nearest, ties to even.
By this definition, ε equals the value of the unit in the last place relative to 1, i.e. () (where b is the base of the floating point system and p is the precision) and the unit roundoff is u = ε / 2, assuming round-to-nearest mode, and u = ε, assuming round-by-chop.
Nearest integer floating-point operations ceil: returns the nearest integer not less than the given value floor: returns the nearest integer not greater than the given value trunc: returns the nearest integer not greater in magnitude than the given value round lround llround: returns the nearest integer, rounding away from zero in halfway cases ...