Ads
related to: data analysis techniques in health care
Search results
Results from the WOW.Com Content Network
Health care analytics is the health care analysis activities that can be undertaken as a result of data collected from four areas within healthcare: (1) claims and cost data, (2) pharmaceutical and research and development (R&D) data, (3) clinical data (such as collected from electronic medical records (EHRs)), and (4) patient behaviors and preferences data (e.g. patient satisfaction or retail ...
Artificial intelligence in healthcare is the application of artificial intelligence (AI) to analyze and understand complex medical and healthcare data. In some cases, it can exceed or augment human capabilities by providing better or faster ways to diagnose, treat, or prevent disease.
Data mining is a particular data analysis technique that focuses on statistical modeling and knowledge discovery for predictive rather than purely descriptive purposes, while business intelligence covers data analysis that relies heavily on aggregation, focusing mainly on business information. [4]
Healthcare quality and safety require that the right information be available at the right time to support patient care and health system management decisions. Gaining consensus on essential data content and documentation standards is a necessary prerequisite for high-quality data in the interconnected healthcare system of the future.
Some of the problems tackled by CRI are: creation of data warehouses of health care data that can be used for research, support of data collection in clinical trials by the use of electronic data capture systems, streamlining ethical approvals and renewals (in US the responsible entity is the local institutional review board), maintenance of ...
Clinical data standards are used to store and communicate information related to healthcare so that its meaning is unambiguous. They are used in clinical practice, in activity analysis and finding, and in research and development. There are many existing and proposed standards and many bodies working in this field.
Health data are classified as either structured or unstructured. Structured health data is standardized and easily transferable between health information systems. [4] For example, a patient's name, date of birth, or a blood-test result can be recorded in a structured data format.
Due to the complexity and variability of public health data, like health care data generally, the issue of data modeling presents a particular challenge. While a generation ago flat data sets for statistical analysis were the norm, today's requirements of interoperability and integrated sets of data across the public health enterprise require ...
Ads
related to: data analysis techniques in health care