enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Additive identity - Wikipedia

    en.wikipedia.org/wiki/Additive_identity

    In mathematics, the additive identity of a set that is equipped with the operation of addition is an element which, when added to any element x in the set, yields x.One of the most familiar additive identities is the number 0 from elementary mathematics, but additive identities occur in other mathematical structures where addition is defined, such as in groups and rings.

  3. Proofs involving the addition of natural numbers - Wikipedia

    en.wikipedia.org/wiki/Proofs_involving_the...

    The base case b = 0 follows immediately from the identity element property (0 is an additive identity), which has been proved above: a + 0 = a = 0 + a. Next we will prove the base case b = 1, that 1 commutes with everything, i.e. for all natural numbers a, we have a + 1 = 1 + a.

  4. Identity element - Wikipedia

    en.wikipedia.org/wiki/Identity_element

    In fact, every element can be a left identity. In a similar manner, there can be several right identities. But if there is both a right identity and a left identity, then they must be equal, resulting in a single two-sided identity. To see this, note that if l is a left identity and r is a right identity, then l = l ∗ r = r.

  5. Portal:Arithmetic - Wikipedia

    en.wikipedia.org/wiki/Portal:Arithmetic

    In mathematics, the additive inverse of an element x, denoted -x, is the element that when added to x, yields the additive identity, 0 (zero). In the most familiar cases, this is the number 0, but it can also refer to a more generalized zero element .

  6. Zero element - Wikipedia

    en.wikipedia.org/wiki/Zero_element

    An additive identity is the identity element in an additive group or monoid. It corresponds to the element 0 such that for all x in the group, 0 + x = x + 0 = x. Some examples of additive identity include: The zero vector under vector addition: the vector whose components are all 0; in a normed vector space its norm (length) is also 0.

  7. 0 - Wikipedia

    en.wikipedia.org/wiki/0

    0 (zero) is a number representing an empty quantity.Adding (or subtracting) 0 to any number leaves that number unchanged; in mathematical terminology, 0 is the additive identity of the integers, rational numbers, real numbers, and complex numbers, as well as other algebraic structures.

  8. Characteristic (algebra) - Wikipedia

    en.wikipedia.org/wiki/Characteristic_(algebra)

    In mathematics, the characteristic of a ring R, often denoted char(R), is defined to be the smallest positive number of copies of the ring's multiplicative identity (1) that will sum to the additive identity (0). If no such number exists, the ring is said to have characteristic zero.

  9. Identity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Identity_(mathematics)

    Visual proof of the Pythagorean identity: for any angle , the point (,) = (⁡, ⁡) lies on the unit circle, which satisfies the equation + =.Thus, ⁡ + ⁡ =. In mathematics, an identity is an equality relating one mathematical expression A to another mathematical expression B, such that A and B (which might contain some variables) produce the same value for all values of the variables ...