enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    (Textbook, targeting advanced undergraduate and postgraduate students in mathematics, which also discusses numerical partial differential equations.) John Denholm Lambert, Numerical Methods for Ordinary Differential Systems, John Wiley & Sons, Chichester, 1991. ISBN 0-471-92990-5. (Textbook, slightly more demanding than the book by Iserles.)

  3. Numerical analysis - Wikipedia

    en.wikipedia.org/wiki/Numerical_analysis

    The field of numerical analysis predates the invention of modern computers by many centuries. Linear interpolation was already in use more than 2000 years ago. Many great mathematicians of the past were preoccupied by numerical analysis, [5] as is obvious from the names of important algorithms like Newton's method, Lagrange interpolation polynomial, Gaussian elimination, or Euler's method.

  4. Romberg's method - Wikipedia

    en.wikipedia.org/wiki/Romberg's_method

    In numerical analysis, Romberg's method [1] is used to estimate the definite integral by applying Richardson extrapolation [2] repeatedly on the trapezium rule or the rectangle rule (midpoint rule). The estimates generate a triangular array .

  5. List of numerical analysis topics - Wikipedia

    en.wikipedia.org/wiki/List_of_numerical_analysis...

    Finite difference methods for heat equation and related PDEs: FTCS scheme (forward-time central-space) — first-order explicit; Crank–Nicolson method — second-order implicit; Finite difference methods for hyperbolic PDEs like the wave equation: Lax–Friedrichs method — first-order explicit; Lax–Wendroff method — second-order explicit

  6. Finite difference method - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_method

    To use a finite difference method to approximate the solution to a problem, one must first discretize the problem's domain. This is usually done by dividing the domain into a uniform grid (see image). This means that finite-difference methods produce sets of discrete numerical approximations to the derivative, often in a "time-stepping" manner.

  7. Numerical differentiation - Wikipedia

    en.wikipedia.org/wiki/Numerical_differentiation

    The name is in analogy with quadrature, meaning numerical integration, where weighted sums are used in methods such as Simpson's method or the Trapezoidal rule. There are various methods for determining the weight coefficients, for example, the Savitzky–Golay filter. Differential quadrature is used to solve partial differential equations ...

  8. Numerical method - Wikipedia

    en.wikipedia.org/wiki/Numerical_method

    Necessary conditions for a numerical method to effectively approximate (,) = are that and that behaves like when . So, a numerical method is called consistent if and only if the sequence of functions { F n } n ∈ N {\displaystyle \left\{F_{n}\right\}_{n\in \mathbb {N} }} pointwise converges to F {\displaystyle F} on the set S {\displaystyle S ...

  9. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    An illustration of Newton's method. In numerical analysis, the Newton–Raphson method, also known simply as Newton's method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a real-valued function.