enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Symmetric polynomial - Wikipedia

    en.wikipedia.org/wiki/Symmetric_polynomial

    The following polynomials in two variables X 1 and X 2 are symmetric: + + + + (+) as is the following polynomial in three variables X 1, X 2, X 3: . There are many ways to make specific symmetric polynomials in any number of variables (see the various types below).

  3. Cycle index - Wikipedia

    en.wikipedia.org/wiki/Cycle_index

    The cycle index polynomial of a permutation group is the average of the cycle index monomials of its elements. The phrase cycle indicator is also sometimes used in place of cycle index . Knowing the cycle index polynomial of a permutation group, one can enumerate equivalence classes due to the group 's action .

  4. Symmetric function - Wikipedia

    en.wikipedia.org/wiki/Symmetric_function

    Aside from polynomial functions, tensors that act as functions of several vectors can be symmetric, and in fact the space of symmetric -tensors on a vector space is isomorphic to the space of homogeneous polynomials of degree on . Symmetric functions should not be confused with even and odd functions, which have a different sort of symmetry.

  5. Symmetry in mathematics - Wikipedia

    en.wikipedia.org/wiki/Symmetry_in_mathematics

    Symmetric polynomials arise naturally in the study of the relation between the roots of a polynomial in one variable and its coefficients, since the coefficients can be given by polynomial expressions in the roots, and all roots play a similar role in this setting. From this point of view, the elementary symmetric polynomials are the most ...

  6. Lagrange's theorem (group theory) - Wikipedia

    en.wikipedia.org/wiki/Lagrange's_theorem_(group...

    (For example, if the variables x, y, and z are permuted in all 6 possible ways in the polynomial x + y − z then we get a total of 3 different polynomials: x + y − z, x + z − y, and y + z − x. Note that 3 is a factor of 6.) The number of such polynomials is the index in the symmetric group S n of the subgroup H of permutations that ...

  7. Representation theory of the symmetric group - Wikipedia

    en.wikipedia.org/wiki/Representation_theory_of...

    In mathematics, the representation theory of the symmetric group is a particular case of the representation theory of finite groups, for which a concrete and detailed theory can be obtained. This has a large area of potential applications, from symmetric function theory to quantum chemistry studies of atoms, molecules and solids.

  8. Cyclic (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Cyclic_(mathematics)

    Cyclic group, a group generated by a single element; Cyclic homology, an approximation of K-theory used in non-commutative differential geometry; Cyclic module, a module generated by a single element; Cyclic notation, a way of writing permutations; Cyclic number, a number such that cyclic permutations of the digits are successive multiples of ...

  9. Elementary symmetric polynomial - Wikipedia

    en.wikipedia.org/.../Elementary_symmetric_polynomial

    That is, any symmetric polynomial P is given by an expression involving only additions and multiplication of constants and elementary symmetric polynomials. There is one elementary symmetric polynomial of degree d in n variables for each positive integer d ≤ n, and it is formed by adding together all distinct products of d distinct variables.