Search results
Results from the WOW.Com Content Network
Cycle graph (algebra), a diagram representing the cycles determined by taking powers of group elements; Circulant graph, a graph with cyclic symmetry; Cycle (graph theory), a nontrivial path in some graph from a node to itself; Cyclic graph, a graph containing at least one graph cycle; Cyclic group, a group generated by a single element; Cyclic ...
One context in which symmetric polynomial functions occur is in the study of monic univariate polynomials of degree n having n roots in a given field.These n roots determine the polynomial, and when they are considered as independent variables, the coefficients of the polynomial are symmetric polynomial functions of the roots.
In graph theory, a branch of mathematics, a cycle basis of an undirected graph is a set of simple cycles that forms a basis of the cycle space of the graph. That is, it is a minimal set of cycles that allows every even-degree subgraph to be expressed as a symmetric difference of basis cycles.
The cycle index polynomial of a permutation group is the average of the cycle index monomials of its elements. The phrase cycle indicator is also sometimes used in place of cycle index . Knowing the cycle index polynomial of a permutation group, one can enumerate equivalence classes due to the group 's action .
Every cycle graph is a circulant graph, as is every crown graph with number of vertices congruent to 2 modulo 4. The Paley graphs of order n (where n is a prime number congruent to 1 modulo 4) is a graph in which the vertices are the numbers from 0 to n − 1 and two vertices are adjacent if their difference is a quadratic residue modulo n.
As cycle graphs can be drawn as regular polygons, the symmetries of an n-cycle are the same as those of a regular polygon with n sides, the dihedral group of order 2n. In particular, there exist symmetries taking any vertex to any other vertex, and any edge to any other edge, so the n -cycle is a symmetric graph .
The cycle space of a planar graph is the cut space of its dual graph, and vice versa. The minimum weight cycle basis for a planar graph is not necessarily the same as the basis formed by its bounded faces: it can include cycles that are not faces, and some faces may not be included as cycles in the minimum weight cycle basis.
A cycle graph illustrates the various cycles of a group and is particularly useful in visualizing the structure of small finite groups. A cycle graph for a cyclic group is simply a circular graph, where the group order is equal to the number of nodes. A single generator defines the group as a directional path on the graph, and the inverse ...