Search results
Results from the WOW.Com Content Network
Tay, Mareels and Moore (1998) defined settling time as "the time required for the response curve to reach and stay within a range of certain percentage (usually 5% or 2%) of the final value." [ 2 ] Mathematical detail
A circuit is designed to minimize rise time while containing distortion of the signal within acceptable limits. Overshoot represents a distortion of the signal. In circuit design, the goals of minimizing overshoot and of decreasing circuit rise time can conflict. The magnitude of overshoot depends on time through a phenomenon called "damping."
The settling time is the time for departures from final value to sink below some specified level, say 10% of final value. The dependence of settling time upon μ is not obvious, and the approximation of a two-pole system probably is not accurate enough to make any real-world conclusions about feedback dependence of settling time.
The factor of 1 / 2 is present because the zero-point energy of the n th mode is 1 / 2 E n, where E n is the energy increment for the n th mode. (It is the same 1 / 2 as appears in the equation E = 1 / 2 ħω.) Written in this way, this sum is clearly divergent; however, it can be used to create finite expressions.
In physics and engineering, the time constant, usually denoted by the Greek letter τ (tau), is the parameter characterizing the response to a step input of a first-order, linear time-invariant (LTI) system. [1] [note 1] The time constant is the main characteristic unit of a first-order LTI system. It gives speed of the response. In the time ...
= where is the relaxation time of the particle (the time constant in the exponential decay of the particle velocity due to drag), is the fluid velocity of the flow well away from the obstacle, and is the characteristic dimension of the obstacle (typically its diameter) or a characteristic length scale in the flow (like boundary layer thickness ...
The Lorentz factor γ is defined as [3] = = = = =, where: . v is the relative velocity between inertial reference frames,; c is the speed of light in vacuum,; β is the ratio of v to c,; t is coordinate time,
It is most often used to model resonances (unstable particles) in high-energy physics. In this case, E is the center-of-mass energy that produces the resonance, M is the mass of the resonance, and Γ is the resonance width (or decay width), related to its mean lifetime according to τ = 1 / Γ. (With units included, the formula is τ = ħ / Γ.)