Search results
Results from the WOW.Com Content Network
Homeostatic capacity refers to the capability of systems to self-stabilize in response to external forces or stressors, or more simply the capability of systems to maintain homeostasis. [1] [2] For living organisms, it is life's foundational trait, consisting of a hierarchy and network of traits endowed by nature and shaped by natural selection.
Thus, to Barcroft homeostasis was not only organized by the brain—homeostasis served the brain. [13] Homeostasis is an almost exclusively biological term, referring to the concepts described by Bernard and Cannon, concerning the constancy of the internal environment in which the cells of the body live and survive.
Energy intake is measured by the amount of calories consumed from food and fluids. [1] Energy intake is modulated by hunger, which is primarily regulated by the hypothalamus, [1] and choice, which is determined by the sets of brain structures that are responsible for stimulus control (i.e., operant conditioning and classical conditioning) and cognitive control of eating behavior.
Developmental homeostasis is a process in which animals develop more or less normally, despite defective genes and deficient environments. [1] It is an organism's ability to overcome certain circumstances in order to develop normally. This can be a circumstance that interferes with either a physical or mental trait.
This page was last edited on 1 November 2018, at 00:54 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
Homeostatic feeling is a class of feelings (e.g. thirst, fatigue, pain, desire, malaise, well-being) that inform us about our physiological condition. [1] In his earlier work Antonio Damasio used "primordial feeling" but he now prefers the term "homeostatic feeling" for the class.
The HOMA model was originally designed as a special case of a more general structural (HOMA-CIGMA) model that includes the continuous infusion of glucose with model assessment (CIGMA) approach; both techniques use mathematical equations to describe the functioning of the major effector organs influencing glucose/insulin interactions.
Acid–base homeostasis is the homeostatic regulation of the pH of the body's extracellular fluid (ECF). [1] The proper balance between the acids and bases (i.e. the pH) in the ECF is crucial for the normal physiology of the body—and for cellular metabolism . [ 1 ]