Search results
Results from the WOW.Com Content Network
The book contains specific algebraic explanations for each of the above operations. Most of the information in this article is from the original book. The algorithms/operations for multiplication, etc., can be expressed in other more compact ways that the book does not specify, despite the chapter on algebraic description.
An example of an external operation is scalar multiplication, where a vector is multiplied by a scalar and result in a vector. An n -ary multifunction or multioperation ω is a mapping from a Cartesian power of a set into the set of subsets of that set, formally ω : X n → P ( X ) {\displaystyle \omega :X^{n}\rightarrow {\mathcal {P}}(X)} .
If this number is truncated to 4 decimal places, the result is 3.141. Rounding is a similar process in which the last preserved digit is increased by one if the next digit is 5 or greater but remains the same if the next digit is less than 5, so that the rounded number is the best approximation of a given precision for the original number.
Multiplication can also be thought of as scaling. Here, 2 is being multiplied by 3 using scaling, giving 6 as a result. Animation for the multiplication 2 × 3 = 6 4 × 5 = 20. The large rectangle is made up of 20 squares, each 1 unit by 1 unit. Area of a cloth 4.5m × 2.5m = 11.25m 2; 4 1 / 2 × 2 1 / 2 = 11 1 / 4
William Oughtred (5 March 1574 – 30 June 1660), [1] also Owtred, Uhtred, etc., was an English mathematician and Anglican clergyman. [2] [3] [4] After John Napier discovered logarithms and Edmund Gunter created the logarithmic scales (lines, or rules) upon which slide rules are based, Oughtred was the first to use two such scales sliding by one another to perform direct multiplication and ...
Connelly began rewriting popular songs to help students learn multiplication in March. His first video, a reinterpretation of "I Want It That Way" by the Backstreet Boys, taught kids how to ...
The Chisanbop system. When a finger is touching the table, it contributes its corresponding number to a total. Chisanbop or chisenbop (from Korean chi (ji) finger + sanpŏp (sanbeop) calculation [1] 지산법/指算法), sometimes called Fingermath, [2] is a finger counting method used to perform basic mathematical operations.
If a positional numeral system is used, a natural way of multiplying numbers is taught in schools as long multiplication, sometimes called grade-school multiplication, sometimes called the Standard Algorithm: multiply the multiplicand by each digit of the multiplier and then add up all the properly shifted results.