Search results
Results from the WOW.Com Content Network
A sphere formed using the Chebyshev distance as a metric is a cube with each face perpendicular to one of the coordinate axes, but a sphere formed using Manhattan distance is an octahedron: these are dual polyhedra, but among cubes, only the square (and 1-dimensional line segment) are self-dual polytopes.
Calculate a cell index using comparisons of the contour level(s) with the data values at the cell corners. Use a pre-built lookup table, keyed on the cell index, to describe the output geometry for the cell. Apply linear interpolation along the boundaries of the cell to calculate the exact contour position.
This project work also aims at determining the correct value of density by clearing the objects touching the borders of the image. In this project three applications are taken into account and using Matlab with image processing toolbox the count and density values are calculated for each.
A metric on a set X is a function (called the distance function or simply distance) d : X × X → R + (where R + is the set of non-negative real numbers). For all x, y, z in X, this function is required to satisfy the following conditions: d(x, y) ≥ 0 (non-negativity) d(x, y) = 0 if and only if x = y (identity of indiscernibles.
is a simple IDW weighting function, as defined by Shepard, [3] x denotes an interpolated (arbitrary) point, x i is an interpolating (known) point, is a given distance (metric operator) from the known point x i to the unknown point x, N is the total number of known points used in interpolation and is a positive real number, called the power ...
In general, a distance matrix is a weighted adjacency matrix of some graph. In a network, a directed graph with weights assigned to the arcs, the distance between two nodes of the network can be defined as the minimum of the sums of the weights on the shortest paths joining the two nodes (where the number of steps in the path is bounded). [2]
The haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes.Important in navigation, it is a special case of a more general formula in spherical trigonometry, the law of haversines, that relates the sides and angles of spherical triangles.
A metric space defined over a set of points in terms of distances in a graph defined over the set is called a graph metric. The vertex set (of an undirected graph) and the distance function form a metric space, if and only if the graph is connected. The eccentricity ϵ(v) of a vertex v is the greatest distance between v and any other vertex; in ...