Search results
Results from the WOW.Com Content Network
The multiple valued version of log(z) is a set, but it is easier to write it without braces and using it in formulas follows obvious rules. log(z) is the set of complex numbers v which satisfy e v = z; arg(z) is the set of possible values of the arg function applied to z. When k is any integer:
On the region consisting of complex numbers that are not negative real numbers or 0, the function is the analytic continuation of the natural logarithm. The values on the negative real line can be obtained as limits of values at nearby complex numbers with positive imaginary parts.
All instances of log(x) without a subscript base should be interpreted as a natural logarithm, also commonly written as ln(x) or log e (x). In number theory , an arithmetic , arithmetical , or number-theoretic function [ 1 ] [ 2 ] is generally any function whose domain is the set of positive integers and whose range is a subset of the complex ...
Briggs' first table contained the common logarithms of all integers in the range from 1 to 1000, with a precision of 14 digits. Subsequently, tables with increasing scope were written. These tables listed the values of log 10 x for any number x in a certain range, at a certain precision. Base-10 logarithms were universally used for computation ...
The top right graph uses a log-10 scale for just the X-axis, and the bottom right graph uses a log-10 scale for both the X axis and the Y-axis. Presentation of data on a logarithmic scale can be helpful when the data: covers a large range of values, since the use of the logarithms of the values rather than the actual values reduces a wide range ...
Evaluations of the digamma function at rational values. [10] The Laurent series expansion for the Riemann zeta function*, where it is the first of the Stieltjes constants. [11] Values of the derivative of the Riemann zeta function and Dirichlet beta function. [12]: 137 [13] In connection to the Laplace and Mellin transform. [14] [15]
The two values behave as equal in numerical comparisons, but some operations return different results for +0 and −0. For instance, 1/(−0) returns negative infinity, while 1/(+0) returns positive infinity (so that the identity 1/(1/±∞) = ±∞ is maintained).
The mathematical notation for using the common logarithm is log(x), [4] log 10 (x), [5] or sometimes Log(x) with a capital L; [a] on calculators, it is printed as "log", but mathematicians usually mean natural logarithm (logarithm with base e ≈ 2.71828) rather than common logarithm when writing "log".