enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Inverse function theorem - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_theorem

    For functions of a single variable, the theorem states that if is a continuously differentiable function with nonzero derivative at the point ; then is injective (or bijective onto the image) in a neighborhood of , the inverse is continuously differentiable near = (), and the derivative of the inverse function at is the reciprocal of the derivative of at : ′ = ′ = ′ (()).

  3. Function of several complex variables - Wikipedia

    en.wikipedia.org/wiki/Function_of_several...

    Many examples of such functions were familiar in nineteenth-century mathematics; abelian functions, theta functions, and some hypergeometric series, and also, as an example of an inverse problem; the Jacobi inversion problem. [7] Naturally also same function of one variable that depends on some complex parameter is a candidate.

  4. Inverse function rule - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_rule

    In calculus, the inverse function rule is a formula that expresses the derivative of the inverse of a bijective and differentiable function f in terms of the derivative of f. More precisely, if the inverse of f {\displaystyle f} is denoted as f − 1 {\displaystyle f^{-1}} , where f − 1 ( y ) = x {\displaystyle f^{-1}(y)=x} if and only if f ...

  5. Inverse mapping theorem - Wikipedia

    en.wikipedia.org/wiki/Inverse_mapping_theorem

    In mathematics, inverse mapping theorem may refer to: the inverse function theorem on the existence of local inverses for functions with non-singular derivatives the bounded inverse theorem on the boundedness of the inverse for invertible bounded linear operators on Banach spaces

  6. Inverse function - Wikipedia

    en.wikipedia.org/wiki/Inverse_function

    The inverse function theorem can be generalized to functions of several variables. Specifically, a continuously differentiable multivariable function f : R n → R n is invertible in a neighborhood of a point p as long as the Jacobian matrix of f at p is invertible .

  7. Nash–Moser theorem - Wikipedia

    en.wikipedia.org/wiki/Nash–Moser_theorem

    In the mathematical field of analysis, the Nash–Moser theorem, discovered by mathematician John Forbes Nash and named for him and Jürgen Moser, is a generalization of the inverse function theorem on Banach spaces to settings when the required solution mapping for the linearized problem is not bounded.

  8. Jacobian conjecture - Wikipedia

    en.wikipedia.org/wiki/Jacobian_conjecture

    The condition J F ≠ 0 is related to the inverse function theorem in multivariable calculus. In fact for smooth functions (and so in particular for polynomials) a smooth local inverse function to F exists at every point where J F is non-zero. For example, the map x → x + x 3 has a smooth global inverse, but the inverse is not polynomial.

  9. Local diffeomorphism - Wikipedia

    en.wikipedia.org/wiki/Local_diffeomorphism

    A map is a local diffeomorphism if and only if it is a smooth immersion (smooth local embedding) and an open map. The inverse function theorem implies that a smooth map f : X → Y {\displaystyle f:X\to Y} is a local diffeomorphism if and only if the derivative D f x : T x X → T f ( x ) Y {\displaystyle Df_{x}:T_{x}X\to T_{f(x)}Y} is a linear ...