Search results
Results from the WOW.Com Content Network
Crystallography is used by materials scientists to characterize different materials. In single crystals, the effects of the crystalline arrangement of atoms is often easy to see macroscopically because the natural shapes of crystals reflect the atomic structure. In addition, physical properties are often controlled by crystalline defects.
Developing protein crystals is a difficult process influenced by many factors, including pH, temperature, ionic strength in the crystallization solution, and even gravity. [3] Once formed, these crystals can be used in structural biology to study the molecular structure of the protein, particularly for various industrial or medical purposes.
Crystallization is the process by which solids form, where the atoms or molecules are highly organized into a structure known as a crystal. Some ways by which crystals form are precipitating from a solution, freezing, or more rarely deposition directly from a gas.
Crystallization of polymers is a process associated with partial alignment of their molecular chains. These chains fold together and form ordered regions called lamellae, which compose larger spheroidal structures named spherulites. [1] [2] Polymers can crystallize upon cooling from melting, mechanical stretching or solvent evaporation ...
Retrogradation is a reaction that takes place when the amylose and amylopectin chains in cooked, gelatinized starch realign themselves as the cooked starch cools. [1]When native starch is heated and dissolved in water, the crystalline structure of amylose and amylopectin molecules is lost and they hydrate to form a viscous solution.
Salting out (also known as salt-induced precipitation, salt fractionation, anti-solvent crystallization, precipitation crystallization, or drowning out) [1] is a purification technique that utilizes the reduced solubility of certain molecules in a solution of very high ionic strength.
Crystals found in rocks typically range in size from a fraction of a millimetre to several centimetres across, although exceptionally large crystals are occasionally found. As of 1999 [update] , the world's largest known naturally occurring crystal is a crystal of beryl from Malakialina, Madagascar , 18 m (59 ft) long and 3.5 m (11 ft) in ...
On the other hand, a badly scratched container will result in many lines of small crystals. To achieve a moderate number of medium-sized crystals, a container which has a few scratches works best. Likewise, adding small previously made crystals, or seed crystals, to a crystal growing project will provide nucleating sites to the solution.