enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bessel's correction - Wikipedia

    en.wikipedia.org/wiki/Bessel's_correction

    ¯ is the sample mean; σ 2 is the population variance; s n 2 is the biased sample variance (i.e., without Bessel's correction) s 2 is the unbiased sample variance (i.e., with Bessel's correction) The standard deviations will then be the square roots of the respective variances.

  3. Sample mean and covariance - Wikipedia

    en.wikipedia.org/wiki/Sample_mean_and_covariance

    The sample covariance matrix has in the denominator rather than due to a variant of Bessel's correction: In short, the sample covariance relies on the difference between each observation and the sample mean, but the sample mean is slightly correlated with each observation since it is defined in terms of all observations.

  4. Outlier - Wikipedia

    en.wikipedia.org/wiki/Outlier

    For instance, when sampling from a Cauchy distribution, [31] the sample variance increases with the sample size, the sample mean fails to converge as the sample size increases, and outliers are expected at far larger rates than for a normal distribution. Even a slight difference in the fatness of the tails can make a large difference in the ...

  5. Bootstrapping (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bootstrapping_(statistics)

    This results in an approximately-unbiased estimator for the variance of the sample mean. [48] This means that samples taken from the bootstrap distribution will have a variance which is, on average, equal to the variance of the total population. Histograms of the bootstrap distribution and the smooth bootstrap distribution appear below.

  6. Chauvenet's criterion - Wikipedia

    en.wikipedia.org/wiki/Chauvenet's_criterion

    The idea behind Chauvenet's criterion finds a probability band that reasonably contains all n samples of a data set, centred on the mean of a normal distribution.By doing this, any data point from the n samples that lies outside this probability band can be considered an outlier, removed from the data set, and a new mean and standard deviation based on the remaining values and new sample size ...

  7. 68–95–99.7 rule - Wikipedia

    en.wikipedia.org/wiki/68–95–99.7_rule

    Diagram showing the cumulative distribution function for the normal distribution with mean (μ) 0 and variance (σ 2) 1. These numerical values "68%, 95%, 99.7%" come from the cumulative distribution function of the normal distribution. The prediction interval for any standard score z corresponds numerically to (1 − (1 − Φ μ,σ 2 (z)) · 2).

  8. Median absolute deviation - Wikipedia

    en.wikipedia.org/wiki/Median_absolute_deviation

    In the MAD, the deviations of a small number of outliers are irrelevant. Because the MAD is a more robust estimator of scale than the sample variance or standard deviation, it works better with distributions without a mean or variance, such as the Cauchy distribution.

  9. Errors and residuals - Wikipedia

    en.wikipedia.org/wiki/Errors_and_residuals

    The difference between the height of each man in the sample and the observable sample mean is a residual. Note that, because of the definition of the sample mean, the sum of the residuals within a random sample is necessarily zero, and thus the residuals are necessarily not independent.