enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. De Morgan's laws - Wikipedia

    en.wikipedia.org/wiki/De_Morgan's_laws

    De Morgan's laws represented with Venn diagrams.In each case, the resultant set is the set of all points in any shade of blue. In propositional logic and Boolean algebra, De Morgan's laws, [1] [2] [3] also known as De Morgan's theorem, [4] are a pair of transformation rules that are both valid rules of inference.

  3. De Morgan algebra - Wikipedia

    en.wikipedia.org/wiki/De_Morgan_algebra

    De Morgan algebras are important for the study of the mathematical aspects of fuzzy logic. The standard fuzzy algebra F = ([0, 1], max(x, y), min(x, y), 0, 1, 1 − x) is an example of a De Morgan algebra where the laws of excluded middle and noncontradiction do not hold.

  4. Law (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Law_(mathematics)

    Pythagorean theorem: It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides. The theorem can be written as an equation relating the lengths of the sides a, b and the hypotenuse c, sometimes called the Pythagorean equation: [6]

  5. Rule of inference - Wikipedia

    en.wikipedia.org/wiki/Rule_of_inference

    In classical propositional logic, they indeed coincide; the deduction theorem states that A ⊢ B if and only if ⊢ A → B. There is however a distinction worth emphasizing even in this case: the first notation describes a deduction , that is an activity of passing from sentences to sentences, whereas A → B is simply a formula made with a ...

  6. Proof by exhaustion - Wikipedia

    en.wikipedia.org/wiki/Proof_by_exhaustion

    Proof by exhaustion, also known as proof by cases, proof by case analysis, complete induction or the brute force method, is a method of mathematical proof in which the statement to be proved is split into a finite number of cases or sets of equivalent cases, and where each type of case is checked to see if the proposition in question holds. [1]

  7. Augustus De Morgan - Wikipedia

    en.wikipedia.org/wiki/Augustus_De_Morgan

    Augustus De Morgan (27 June 1806 – 18 March 1871) was a British mathematician and logician.He is best known for De Morgan's laws, relating logical conjunction, disjunction, and negation, and for coining the term "mathematical induction", the underlying principles of which he formalized. [1]

  8. De Morgan - Wikipedia

    en.wikipedia.org/wiki/De_Morgan

    De Morgan or de Morgan is a surname, and may refer to: Augustus De Morgan (1806–1871), British mathematician and logician. De Morgan's laws (or De Morgan's theorem), a set of rules from propositional logic. The De Morgan Medal, a triennial mathematics prize awarded by the London Mathematical Society.

  9. Law of excluded middle - Wikipedia

    en.wikipedia.org/wiki/Law_of_excluded_middle

    In logic, the law of excluded middle or the principle of excluded middle states that for every proposition, either this proposition or its negation is true. [1] [2] It is one of the three laws of thought, along with the law of noncontradiction, and the law of identity; however, no system of logic is built on just these laws, and none of these laws provides inference rules, such as modus ponens ...