enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. The Nth Degree - Wikipedia

    en.wikipedia.org/wiki/The_Nth_Degree

    Nth degree, or nth degree, are two words expressing a number to a certain level. In the first word, 'Nth' or 'nth', is a word expressing a number, in two parts, 'n' and 'th', but where that number is not known, (hence the use of 'n') and a correlatory factoring, 'th', (exponential amplification, usually from four onwards (fourth, fifth)), is used to multiply the 'n' (number), to arrive at a ...

  3. nth root - Wikipedia

    en.wikipedia.org/wiki/Nth_root

    A root of degree 2 is called a square root and a root of degree 3, a cube root. Roots of higher degree are referred by using ordinal numbers, as in fourth root, twentieth root, etc. The computation of an n th root is a root extraction. For example, 3 is a square root of 9, since 3 2 = 9, and −3 is also a square root of 9, since (−3) 2 = 9.

  4. Degree of a polynomial - Wikipedia

    en.wikipedia.org/wiki/Degree_of_a_polynomial

    For example, a degree two polynomial in two variables, such as + +, is called a "binary quadratic": binary due to two variables, quadratic due to degree two. [ a ] There are also names for the number of terms, which are also based on Latin distributive numbers, ending in -nomial ; the common ones are monomial , binomial , and (less commonly ...

  5. Recurrence relation - Wikipedia

    en.wikipedia.org/wiki/Recurrence_relation

    In mathematics, a recurrence relation is an equation according to which the th term of a sequence of numbers is equal to some combination of the previous terms. Often, only k {\displaystyle k} previous terms of the sequence appear in the equation, for a parameter k {\displaystyle k} that is independent of n {\displaystyle n} ; this number k ...

  6. Homogeneous function - Wikipedia

    en.wikipedia.org/wiki/Homogeneous_function

    In mathematics, a homogeneous function is a function of several variables such that the following holds: If each of the function's arguments is multiplied by the same scalar, then the function's value is multiplied by some power of this scalar; the power is called the degree of homogeneity, or simply the degree.

  7. Polynomial interpolation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_interpolation

    The original use of interpolation polynomials was to approximate values of important transcendental functions such as natural logarithm and trigonometric functions.Starting with a few accurately computed data points, the corresponding interpolation polynomial will approximate the function at an arbitrary nearby point.

  8. Order of approximation - Wikipedia

    en.wikipedia.org/wiki/Order_of_approximation

    In the zeroth-order example above, the quantity "a few" was given, but in the first-order example, the number "4" is given. A first-order approximation of a function (that is, mathematically determining a formula to fit multiple data points) will be a linear approximation, straight line with a slope: a polynomial of degree 1. For example:

  9. Arithmetic progression - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_progression

    Proof without words of the arithmetic progression formulas using a rotated copy of the blocks.. An arithmetic progression or arithmetic sequence is a sequence of numbers such that the difference from any succeeding term to its preceding term remains constant throughout the sequence.