enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Riemann–Lebesgue lemma - Wikipedia

    en.wikipedia.org/wiki/Riemann–Lebesgue_lemma

    In mathematics, the Riemann–Lebesgue lemma, named after Bernhard Riemann and Henri Lebesgue, states that the Fourier transform or Laplace transform of an L 1 function vanishes at infinity. It is of importance in harmonic analysis and asymptotic analysis .

  3. Measurable function - Wikipedia

    en.wikipedia.org/wiki/Measurable_function

    Indeed, two Lebesgue-measurable functions may be constructed in such a way as to make their composition non-Lebesgue-measurable. The (pointwise) supremum, infimum, limit superior, and limit inferior of a sequence (viz., countably many) of real-valued measurable functions are all measurable as well. [1] [4]

  4. Lebesgue integral - Wikipedia

    en.wikipedia.org/wiki/Lebesgue_integral

    The integral of a non-negative general measurable function is then defined as an appropriate supremum of approximations by simple functions, and the integral of a (not necessarily positive) measurable function is the difference of two integrals of non-negative measurable functions. [1]

  5. Direct integral - Wikipedia

    en.wikipedia.org/wiki/Direct_integral

    The simplest example of a direct integral are the L 2 spaces associated to a (σ-finite) countably additive measure μ on a measurable space X. Somewhat more generally one can consider a separable Hilbert space H and the space of square-integrable H-valued functions (,).

  6. Fatou's lemma - Wikipedia

    en.wikipedia.org/wiki/Fatou's_lemma

    Let f 1, f 2, . . . be a sequence of extended real-valued measurable functions defined on a measure space (S,Σ,μ). If there exists a non-negative integrable function g on S such that f n ≤ g for all n, then

  7. Convergence in measure - Wikipedia

    en.wikipedia.org/wiki/Convergence_in_measure

    If X = [a,b] ⊆ R and μ is Lebesgue measure, there are sequences (g n) of step functions and (h n) of continuous functions converging globally in measure to f. If f and f n (n ∈ N) are in L p (μ) for some p > 0 and (f n) converges to f in the p-norm, then (f n) converges to f globally in measure. The converse is false.

  8. Hilbert space - Wikipedia

    en.wikipedia.org/wiki/Hilbert_space

    The problem is a differential equation of the form [()] + = for an unknown function y on an interval [a, b], satisfying general homogeneous Robin boundary conditions {() + ′ ′ = + ′ ′ =. The functions p, q, and w are given in advance, and the problem is to find the function y and constants λ for which the equation has a solution.

  9. Neural oscillation - Wikipedia

    en.wikipedia.org/wiki/Neural_oscillation

    Neural oscillations, in particular theta activity, are extensively linked to memory function. Theta rhythms are very strong in rodent hippocampi and entorhinal cortex during learning and memory retrieval, and they are believed to be vital to the induction of long-term potentiation , a potential cellular mechanism for learning and memory.