Search results
Results from the WOW.Com Content Network
Most operations on a binary search tree (BST) take time directly proportional to the height of the tree, so it is desirable to keep the height small. A binary tree with height h can contain at most 2 0 +2 1 +···+2 h = 2 h+1 −1 nodes. It follows that for any tree with n nodes and height h: + And that implies:
Fig. 1: A binary search tree of size 9 and depth 3, with 8 at the root. In computer science, a binary search tree (BST), also called an ordered or sorted binary tree, is a rooted binary tree data structure with the key of each internal node being greater than all the keys in the respective node's left subtree and less than the ones in its right subtree.
This unsorted tree has non-unique values (e.g., the value 2 existing in different nodes, not in a single node only) and is non-binary (only up to two children nodes per parent node in a binary tree). The root node at the top (with the value 2 here), has no parent as it is the highest in the tree hierarchy.
An extended binary tree, showing internal nodes as yellow circles and external nodes as red squares. A binary tree is a rooted tree in which each node may have up to two children (the nodes directly below it in the tree), and those children are designated as being either left or right.
To turn a regular search tree into an order statistic tree, the nodes of the tree need to store one additional value, which is the size of the subtree rooted at that node (i.e., the number of nodes below it). All operations that modify the tree must adjust this information to preserve the invariant that size[x] = size[left[x]] + size[right[x]] + 1
The function inorderNext [2]: 60 returns an in-order-neighbor of node, either the in-order-successor (for dir=1) or the in-order-predecessor (for dir=0), and the updated stack, so that the binary search tree may be sequentially in-order-traversed and searched in the given direction dir further on.
The root node's number of children has the same upper limit as internal nodes, but has no lower limit. For example, when there are fewer than L−1 elements in the entire tree, the root will be the only node in the tree with no children at all. Leaf nodes In Knuth's terminology, the "leaf" nodes are the actual data objects / chunks.
In computer science, an optimal binary search tree (Optimal BST), sometimes called a weight-balanced binary tree, [1] is a binary search tree which provides the smallest possible search time (or expected search time) for a given sequence of accesses (or access probabilities). Optimal BSTs are generally divided into two types: static and dynamic.