enow.com Web Search

  1. Ads

    related to: how to solve geometric progressions equations with solution

Search results

  1. Results from the WOW.Com Content Network
  2. Geometric progression - Wikipedia

    en.wikipedia.org/wiki/Geometric_progression

    Examples of a geometric sequence are powers r k of a fixed non-zero number r, such as 2 k and 3 k. The general form of a geometric sequence is , , , , , … where r is the common ratio and a is the initial value. The sum of a geometric progression's terms is called a geometric series.

  3. Vandermonde matrix - Wikipedia

    en.wikipedia.org/wiki/Vandermonde_matrix

    Thus, given V and y, one can find the required () by solving for its coefficients in the equation =: [4] a = V − 1 y {\displaystyle a=V^{-1}y} . That is, the map from coefficients to values of polynomials is a bijective linear mapping with matrix V , and the interpolation problem has a unique solution.

  4. Wheat and chessboard problem - Wikipedia

    en.wikipedia.org/wiki/Wheat_and_chessboard_problem

    One of them includes the geometric progression problem. The story is first known to have been recorded in 1256 by Ibn Khallikan. [3] Another version has the inventor of chess (in some tellings Sessa, an ancient Indian Minister) request his ruler give him wheat according to the wheat and chessboard problem. The ruler laughs it off as a meager ...

  5. Arithmetico-geometric sequence - Wikipedia

    en.wikipedia.org/wiki/Arithmetico-geometric_sequence

    An arithmetico-geometric series is a sum of terms that are the elements of an arithmetico-geometric sequence. Arithmetico-geometric sequences and series arise in various applications, such as the computation of expected values in probability theory , especially in Bernoulli processes .

  6. Frobenius solution to the hypergeometric equation - Wikipedia

    en.wikipedia.org/wiki/Frobenius_solution_to_the...

    Since z = 1 − x, the solution of the hypergeometric equation at x = 1 is the same as the solution for this equation at z = 0. But the solution at z = 0 is identical to the solution we obtained for the point x = 0, if we replace each γ by α + β − γ + 1. Hence, to get the solutions, we just make this substitution in the previous results.

  7. Gauss–Seidel method - Wikipedia

    en.wikipedia.org/wiki/Gauss–Seidel_method

    At any step in a Gauss-Seidel iteration, solve the first equation for in terms of , …,; then solve the second equation for in terms of just found and the remaining , …,; and continue to . Then, repeat iterations until convergence is achieved, or break if the divergence in the solutions start to diverge beyond a predefined level.

  8. Bakhshali manuscript - Wikipedia

    en.wikipedia.org/wiki/Bakhshali_manuscript

    The problems involve arithmetic, algebra and geometry, including mensuration. The topics covered include fractions, square roots, arithmetic and geometric progressions, solutions of simple equations, simultaneous linear equations, quadratic equations and indeterminate equations of the second degree. [10] [12]

  9. Kepler triangle - Wikipedia

    en.wikipedia.org/wiki/Kepler_triangle

    Conversely, in any right triangle whose squared edge lengths are in geometric progression with any ratio , the Pythagorean theorem implies that this ratio obeys the identity = +. Therefore, the ratio must be the unique positive solution to this equation, the golden ratio, and the triangle must be a Kepler triangle.

  1. Ads

    related to: how to solve geometric progressions equations with solution