Search results
Results from the WOW.Com Content Network
The positive and negative basis vectors form the eight-element quaternion group. Graphical representation of products of quaternion units as 90° rotations in the planes of 4-dimensional space spanned by two of {1, i, j, k}. The left factor can be viewed as being rotated by the right factor to arrive at the product. Visually i ⋅ j = − (j ⋅ i)
3D visualization of a sphere and a rotation about an Euler axis (^) by an angle of In 3-dimensional space, according to Euler's rotation theorem, any rotation or sequence of rotations of a rigid body or coordinate system about a fixed point is equivalent to a single rotation by a given angle about a fixed axis (called the Euler axis) that runs through the fixed point. [6]
These two scalars (negative and positive unity) can be thought of as scalar quaternions. These two scalars are special limiting cases, corresponding to versors with angles of either zero or π. Unlike other versors, these two cannot be represented by a unique arc.
The group of eight basic unit quaternions, positive and negative, the quaternion group, is also the simplest non-commutative Sylow group. The study of integral quaternions began with Rudolf Lipschitz in 1886, whose system was later simplified by Leonard Eugene Dickson; but the modern system was published by Adolf Hurwitz in 1919.
Such functions can be called functions of a quaternion variable just as functions of a real variable or a complex variable are called. As with complex and real analysis , it is possible to study the concepts of analyticity , holomorphy , harmonicity and conformality in the context of quaternions.
A direct formula for the conversion from a quaternion to Euler angles in any of the 12 possible sequences exists. [2] For the rest of this section, the formula for the sequence Body 3-2-1 will be shown. If the quaternion is properly normalized, the Euler angles can be obtained from the quaternions via the relations:
Rotation can have a sign (as in the sign of an angle): a clockwise rotation is a negative magnitude so a counterclockwise turn has a positive magnitude. A rotation is different from other types of motions: translations , which have no fixed points, and (hyperplane) reflections , each of them having an entire ( n − 1) -dimensional flat of ...
Namely, they have positive values when they represent a rotation that appears clockwise when looking in the positive direction of the axis, and negative values when the rotation appears counter-clockwise. The opposite convention (left hand rule) is less frequently adopted. About the ranges (using interval notation):