Search results
Results from the WOW.Com Content Network
Standard utility functions represent ordinal preferences. The expected utility hypothesis imposes limitations on the utility function and makes utility cardinal (though still not comparable across individuals). Although the expected utility hypothesis is standard in economic modelling, it has been found to be violated in psychological experiments.
A single-attribute utility function maps the amount of money a person has (or gains), to a number representing the subjective satisfaction he derives from it. The motivation to define a utility function comes from the St. Petersburg paradox: the observation that people are not willing to pay much for a lottery, even if its expected monetary gain is infinite.
Isoelastic utility for different values of . When > the curve approaches the horizontal axis asymptotically from below with no lower bound.. In economics, the isoelastic function for utility, also known as the isoelastic utility function, or power utility function, is used to express utility in terms of consumption or some other economic variable that a decision-maker is concerned with.
In expected utility theory, a lottery is a discrete distribution of probability on a set of states of nature.The elements of a lottery correspond to the probabilities that each of the states of nature will occur, (e.g. Rain: 0.70, No Rain: 0.30). [1]
A multi-utility representation (MUR) of a relation is a set U of utility functions, such that : (). In other words, A is preferred to B if and only if all utility functions in the set U unanimously hold this preference. The concept was introduced by Efe Ok.
The term E-utility for "experience utility" has been coined [2] to refer to the types of "hedonistic" utility like that of Bentham's greatest happiness principle. Since morality affects decisions, a VNM-rational agent's morals will affect the definition of its own utility function (see above).
The utility function u(c) is defined only up to positive affine transformation – in other words, a constant could be added to the value of u(c) for all c, and/or u(c) could be multiplied by a positive constant factor, without affecting the conclusions. An agent is risk-averse if and only if the utility function is concave.
E.g., the commodity is a heterogeneous resource, such as land. Then, the utility functions are not functions of a finite number of variables, but rather set functions defined on Borel subsets of the land. The natural generalization of a linear utility function to that model is an additive set function.