Search results
Results from the WOW.Com Content Network
Standard utility functions represent ordinal preferences. The expected utility hypothesis imposes limitations on the utility function and makes utility cardinal (though still not comparable across individuals). Although the expected utility hypothesis is standard in economic modeling, it is violated in psychological experiments.
A single-attribute utility function maps the amount of money a person has (or gains), to a number representing the subjective satisfaction he derives from it. The motivation to define a utility function comes from the St. Petersburg paradox: the observation that people are not willing to pay much for a lottery, even if its expected monetary gain is infinite.
Isoelastic utility for different values of . When > the curve approaches the horizontal axis asymptotically from below with no lower bound.. In economics, the isoelastic function for utility, also known as the isoelastic utility function, or power utility function, is used to express utility in terms of consumption or some other economic variable that a decision-maker is concerned with.
Exponential utility implies constant absolute risk aversion (CARA), with coefficient of absolute risk aversion equal to a constant: ″ ′ =. In the standard model of one risky asset and one risk-free asset, [1] [2] for example, this feature implies that the optimal holding of the risky asset is independent of the level of initial wealth; thus on the margin any additional wealth would be ...
Three trajectories of CIR processes. In mathematical finance, the Cox–Ingersoll–Ross (CIR) model describes the evolution of interest rates.It is a type of "one factor model" (short-rate model) as it describes interest rate movements as driven by only one source of market risk.
In decision theory, the von Neumann–Morgenstern (VNM) utility theorem demonstrates that rational choice under uncertainty involves making decisions that take the form of maximizing the expected value of some cardinal utility function. This function is known as the von Neumann–Morgenstern utility function.
Therefore, the preferences at t = 1 is preserved at t = 2; thus, the exponential discount function demonstrates dynamically consistent preferences over time. For its simplicity, the exponential discounting assumption is the most commonly used in economics. However, alternatives like hyperbolic discounting have more empirical support.
Inverting this formula gives the indirect utility function (utility as a function of price and income): (,) = (),where is the amount of income available to the individual and is equivalent to the expenditure ((,)) in the previous equation.