Search results
Results from the WOW.Com Content Network
The keys, in practice, represent a shared secret between two or more parties that can be used to maintain a private information link. [2] The requirement that both parties have access to the secret key is one of the main drawbacks of symmetric -key encryption, in comparison to public-key encryption (also known as asymmetric-key encryption).
Example of a Key Derivation Function chain as used in the Signal Protocol.The output of one KDF function is the input to the next KDF function in the chain. In cryptography, a key derivation function (KDF) is a cryptographic algorithm that derives one or more secret keys from a secret value such as a master key, a password, or a passphrase using a pseudorandom function (which typically uses a ...
In cryptography, a shared secret is a piece of data, known only to the parties involved, in a secure communication. This usually refers to the key of a symmetric cryptosystem . The shared secret can be a PIN code , a password , a passphrase , a big number, or an array of randomly chosen bytes.
[1] [2] [3] This shared secret may be directly used as a key, or to derive another key. The key, or the derived key, can then be used to encrypt subsequent communications using a symmetric-key cipher. It is a variant of the Diffie–Hellman protocol using elliptic-curve cryptography.
The shared secret can be used, for instance, as the key for a symmetric cipher, which will be, in essentially all cases, much faster. In an asymmetric key encryption scheme, anyone can encrypt messages using a public key, but only the holder of the paired private key can decrypt such a message.
The shared secret can be used, for instance, as the key for a symmetric cipher. If the sender and receiver wish to exchange encrypted messages, each must be equipped to encrypt messages to be sent and decrypt messages received. The nature of the equipping they require depends on the encryption technique they might use. If they use a code, both ...
Shamir's secret sharing (SSS) is an efficient secret sharing algorithm for distributing private information (the "secret") among a group. The secret cannot be revealed unless a quorum of the group acts together to pool their knowledge. To achieve this, the secret is mathematically divided into parts (the "shares") from which the secret can be ...
These two values are chosen in this way to ensure that the resulting shared secret can take on any value from 1 to p − 1. Here is an example of the protocol, with non-secret values in blue, and secret values in red. Alice and Bob publicly agree to use a modulus p = 23 and base g = 5 (which is a primitive root modulo 23).