enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Look-and-say sequence - Wikipedia

    en.wikipedia.org/wiki/Look-and-say_sequence

    Moreover, for any seed the pea pattern produces terms of bounded length: This bound will not typically exceed 2 × Radix + 2 digits (22 digits for decimal: radix = 10) and may only exceed 3 × Radix digits (30 digits for decimal radix) in length for long, degenerate, initial seeds (sequence of "100 ones", etc.).

  3. Decimal representation - Wikipedia

    en.wikipedia.org/wiki/Decimal_representation

    Moreover, in the standard decimal representation of , an infinite sequence of trailing 0's appearing after the decimal point is omitted, along with the decimal point itself if is an integer. Certain procedures for constructing the decimal expansion of x {\displaystyle x} will avoid the problem of trailing 9's.

  4. Real number - Wikipedia

    en.wikipedia.org/wiki/Real_number

    Such a decimal representation specifies the real number as the least upper bound of the decimal fractions that are obtained by truncating the sequence: given a positive integer n, the truncation of the sequence at the place n is the finite partial sum

  5. Computable number - Wikipedia

    en.wikipedia.org/wiki/Computable_number

    A real number is computable if its digit sequence can be produced by some algorithm or Turing machine. The algorithm takes an integer as input and produces the -th digit of the real number's decimal expansion as output. (The decimal expansion of a only refers to the digits following the decimal point.) Turing was aware that this definition is ...

  6. Significant figures - Wikipedia

    en.wikipedia.org/wiki/Significant_figures

    Zeros to the right of the last non-zero digit (trailing zeros) in a number with the decimal point are significant if they are within the measurement or reporting resolution. 1.200 has four significant figures (1, 2, 0, and 0) if they are allowed by the measurement resolution.

  7. Midy's theorem - Wikipedia

    en.wikipedia.org/wiki/Midy's_theorem

    In mathematics, Midy's theorem, named after French mathematician E. Midy, [1] is a statement about the decimal expansion of fractions a/p where p is a prime and a/p has a repeating decimal expansion with an even period (sequence A028416 in the OEIS). If the period of the decimal representation of a/p is 2n, so that

  8. Proof that 22/7 exceeds π - Wikipedia

    en.wikipedia.org/wiki/Proof_that_22/7_exceeds_π

    Proofs of the mathematical result that the rational number ⁠ 22 / 7 ⁠ is greater than π (pi) date back to antiquity. One of these proofs, more recently developed but requiring only elementary techniques from calculus, has attracted attention in modern mathematics due to its mathematical elegance and its connections to the theory of Diophantine approximations.

  9. Repeating decimal - Wikipedia

    en.wikipedia.org/wiki/Repeating_decimal

    A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic (that is, after some place, the same sequence of digits is repeated forever); if this sequence consists only of zeros (that is if there is only a finite number of nonzero digits), the decimal is said to be terminating, and is not considered as repeating.