Search results
Results from the WOW.Com Content Network
This is the first study that shows antibiotics [are] independent of changing the biome and microbiome of the gut by changing the cells of the gut independent of bacteria, which is [a] completely ...
Narrow-spectrum antibiotics have low propensity to induce bacterial resistance and are less likely to disrupt the microbiome (normal microflora). [3] On the other hand, indiscriminate use of broad-spectrum antibiotics may not only induce the development of bacterial resistance and promote the emergency of multidrug-resistant organisms, but also cause off-target effects due to dysbiosis.
Phage therapy does not kill microbiota since it is specific, and it can help those with antibiotic allergies. Some drawbacks are that it is a time-intensive process since the specific bacterium needs to be identified. It also does not currently have the body of research supporting its effects and safety that antibiotics do.
The human microbiome is the aggregate of all microbiota that reside on or within human tissues and biofluids along with the corresponding anatomical sites in which they reside, [1] [2] including the gastrointestinal tract, skin, mammary glands, seminal fluid, uterus, ovarian follicles, lung, saliva, oral mucosa, conjunctiva, and the biliary tract.
The microbiome and host emerged during evolution as a synergistic unit from epigenetics and genetic characteristics, sometimes collectively referred to as a holobiont. [ 7 ] [ 8 ] The presence of microbiota in human and other metazoan guts has been critical for understanding the co-evolution between metazoans and bacteria.
The gut microbiome is altered from antibiotics and is linked to future gut disease, i.e., IBD, ulcerative colitis, obesity, etc. The intestinal immune system is directly influenced by the gut microbiome and can be hard to recover if damaged through antibiotics. [32] The use of minocycline in acne vulgaris has been associated with skin and gut ...
Antimicrobial use has been common practice for at least 2000 years. Ancient Egyptians and ancient Greeks used specific molds and plant extracts to treat infection. [5]In the 19th century, microbiologists such as Louis Pasteur and Jules Francois Joubert observed antagonism between some bacteria and discussed the merits of controlling these interactions in medicine. [6]
According to research conducted in the US that aimed to evaluate physicians' attitudes and knowledge on antimicrobial resistance in ambulatory settings, only 63% of those surveyed reported antibiotic resistance as a problem in their local practices, while 23% reported the aggressive prescription of antibiotics as necessary to avoid failing to ...