Search results
Results from the WOW.Com Content Network
The above discussion focuses on a pendulum bob only acted upon by the force of gravity. Suppose a damping force, e.g. air resistance, as well as a sinusoidal driving force acts on the body. This system is a damped, driven oscillator, and is chaotic. Equation (1) can be written as
controls the amount of non-linearity in the restoring force; if =, the Duffing equation describes a damped and driven simple harmonic oscillator, γ {\displaystyle \gamma } is the amplitude of the periodic driving force; if γ = 0 {\displaystyle \gamma =0} the system is without a driving force, and
A simple harmonic oscillator is an oscillator that is neither driven nor damped.It consists of a mass m, which experiences a single force F, which pulls the mass in the direction of the point x = 0 and depends only on the position x of the mass and a constant k.
"Simple gravity pendulum" model assumes no friction or air resistance. A pendulum is a device made of a weight suspended from a pivot so that it can swing freely. [1] When a pendulum is displaced sideways from its resting, equilibrium position, it is subject to a restoring force due to gravity that will accelerate it back toward the equilibrium position.
The damping ratio is a system parameter, denoted by ζ ("zeta"), that can vary from undamped (ζ = 0), underdamped (ζ < 1) through critically damped (ζ = 1) to overdamped (ζ > 1). The behaviour of oscillating systems is often of interest in a diverse range of disciplines that include control engineering , chemical engineering , mechanical ...
Phase portrait of damped oscillator, with increasing damping strength. The equation of motion is x ¨ + 2 γ x ˙ + ω 2 x = 0. {\displaystyle {\ddot {x}}+2\gamma {\dot {x}}+\omega ^{2}x=0.} In mathematics , a phase portrait is a geometric representation of the orbits of a dynamical system in the phase plane .
A familiar experience of both parametric and driven oscillation is playing on a swing. [1] [2] [3] Rocking back and forth pumps the swing as a driven harmonic oscillator, but once moving, the swing can also be parametrically driven by alternately standing and squatting at key points in the swing arc. This changes moment of inertia of the swing ...
For a free, rigid beam, an impulse is applied at right angle at a point of impact, defined as a distance from the center of mass (CM). The force results in the change in velocity of the CM, i.e. d v c m {\displaystyle dv_{cm}} :