Search results
Results from the WOW.Com Content Network
The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...
C - The mass of the explosive charge M - The mass of the accelerated shell or sheet of material (usually metal). The shell or sheet is often referred to as the flyer, or flyer plate. V or V m - Velocity of accelerated flyer after explosive detonation N - The mass of a tamper shell or sheet on the other side of the explosive charge, if present
Barring detailed mass determinations, [4] the mass can be estimated from the diameter and assumed density values worked out as below. = Besides these estimations, masses can be obtained for the larger asteroids by solving for the perturbations they cause in each other's orbits, [5] or when the asteroid has an orbiting companion of known orbital radius.
m = mass, U = characteristic speed, F = net external forces, L = characteristic length. This provides a dimensionless basis for a relationship between mass, characteristic speed, net external forces, and length (size) which can be used to analyze the effects of fluid mechanics on a body with mass.
Mathematically, density is defined as mass divided by volume: [1] =, where ρ is the density, m is the mass, and V is the volume. In some cases (for instance, in the United States oil and gas industry), density is loosely defined as its weight per unit volume , [ 2 ] although this is scientifically inaccurate – this quantity is more ...
Since all gases have the same volume per mole at a given temperature and pressure far from their points of liquefaction and solidification (see Perfect gas), and air is about 1 / 5 oxygen (molecular mass 32) and 4 / 5 nitrogen (molecular mass 28), the density of any near-perfect gas relative to air can be obtained to a good ...
Island Two is spherical in design, 1,600 m (5,200 ft) in diameter. The Island Three design, better known as the O'Neill cylinder, consists of two counter-rotating cylinders . They are 6.4 km (4 mi) [ 3 ] or 8.0 km (5 mi) [ 4 ] in diameter and are capable of being scaled up to 32.2 km (20 mi) long. [ 7 ]
The standard unit is the meter cubed per kilogram (m 3 /kg or m 3 ·kg −1). Sometimes specific volume is expressed in terms of the number of cubic centimeters occupied by one gram of a substance. In this case, the unit is the centimeter cubed per gram (cm 3 /g or cm 3 ·g −1). To convert m 3 /kg to cm 3 /g, multiply by 1000; conversely ...