Search results
Results from the WOW.Com Content Network
The use of Text Mining together with Machine Learning algorithms received more attention in the last years, [26] with the use of textual content from Internet as input to predict price changes in Stocks and other financial markets. The collective mood of Twitter messages has been linked to stock market performance. [27]
In many cases, the model is chosen on the basis of detection theory to try to guess the probability of an outcome given a set amount of input data, for example given an email determining how likely that it is spam. Models can use one or more classifiers in trying to determine the probability of a set of data belonging to another set. For ...
A machine learning model is a type of mathematical model that, once "trained" on a given dataset, can be used to make predictions or classifications on new data. During training, a learning algorithm iteratively adjusts the model's internal parameters to minimize errors in its predictions. [ 85 ]
Prediction by partial matching (PPM) is an adaptive statistical data compression technique based on context modeling and prediction. PPM models use a set of previous symbols in the uncompressed symbol stream to predict the next symbol in the stream. PPM algorithms can also be used to cluster data into predicted groupings in cluster analysis.
Electricity price forecasting (EPF) is a branch of energy forecasting which focuses on using mathematical, statistical and machine learning models to predict electricity prices in the future. Over the last 30 years electricity price forecasts have become a fundamental input to energy companies’ decision-making mechanisms at the corporate level.
Price Sensitivity Meter (van Westendorp) The Price Sensitivity Meter (PSM) is a market technique for determining consumer price preferences. It was introduced in 1976 by Dutch economist Peter van Westendorp. The technique has been used by a wide variety of researchers in the market research industry. It historically has been promoted by many ...
One of the most notable price prediction models that uses halving cycles as its basis is the Stock-to-Flow (S2F) model created by the pseudonymous Dutch analyst PlanB.
Nonlinear model predictive control, or NMPC, is a variant of model predictive control that is characterized by the use of nonlinear system models in the prediction. As in linear MPC, NMPC requires the iterative solution of optimal control problems on a finite prediction horizon.