Search results
Results from the WOW.Com Content Network
In geometry, a spherical cap or spherical dome is a portion of a sphere or of a ball cut off by a plane. It is also a spherical segment of one base, i.e., bounded by a single plane. If the plane passes through the center of the sphere (forming a great circle), so that the height of the cap is equal to the radius of the sphere, the spherical cap ...
The PACELC theorem, introduced in 2010, [8] builds on CAP by stating that even in the absence of partitioning, there is another trade-off between latency and consistency. PACELC means, if partition (P) happens, the trade-off is between availability (A) and consistency (C); Else (E), the trade-off is between latency (L) and consistency (C).
Descartes's theorem (plane geometry) Descartes's theorem on total angular defect ; Diaconescu's theorem (mathematical logic) Diller–Dress theorem (field theory) Dilworth's theorem (combinatorics, order theory) Dinostratus' theorem (geometry, analysis) Dimension theorem for vector spaces (vector spaces, linear algebra) Dini's theorem
A cap, can be defined as the intersection of a half-space with a convex set .Note that the cap can be defined in any dimensional space. Given a , can be defined as the cap containing corresponding to a half-space parallel to with width times greater than that of the original.
In affine geometry, a cap set is a subset of the affine space (the -dimensional affine space over the three-element field) where no three elements sum to the zero vector. The cap set problem is the problem of finding the size of the largest possible cap set, as a function of n {\displaystyle n} . [ 1 ]
They are used particularly in algebraic geometry and related fields. A key result known as Chevalley's theorem in algebraic geometry shows that the image of a constructible set is constructible for an important class of mappings (more specifically morphisms) of algebraic varieties (or more generally schemes). In addition, a large number of ...
A spiral similarity taking triangle ABC to triangle A'B'C'. Spiral similarity is a plane transformation in mathematics composed of a rotation and a dilation. [1] It is used widely in Euclidean geometry to facilitate the proofs of many theorems and other results in geometry, especially in mathematical competitions and olympiads.
Riemannian geometry, the study of Riemannian manifolds, has deep connections to other areas of math, including geometric topology, complex geometry, and algebraic geometry. Applications include physics (especially general relativity and gauge theory ), computer graphics , machine learning , and cartography .