Search results
Results from the WOW.Com Content Network
De Moivre's formula does not hold for non-integer powers. The derivation of de Moivre's formula above involves a complex number raised to the integer power n. If a complex number is raised to a non-integer power, the result is multiple-valued (see failure of power and logarithm identities).
In mathematics, a root of unity, occasionally called a de Moivre number, is any complex number that yields 1 when raised to some positive integer power n. Roots of unity are used in many branches of mathematics, and are especially important in number theory , the theory of group characters , and the discrete Fourier transform .
Maximum power theorem (electrical circuits) Maxwell's theorem (probability theory) May's theorem (game theory) Mazur–Ulam theorem (normed spaces) Mazur's torsion theorem (algebraic geometry) Mean value theorem ; Measurable Riemann mapping theorem (conformal mapping) Mellin inversion theorem (complex analysis) Menelaus's theorem
One of them is a false root. If so, the example when x=0 and x=2*pi will not be ambiguous as long as the false root is discarded. Therefore, the section that says De Moivre's formula fails for non-integer power has used the wrong form of De Moivre's formula and has drawn an incorrect conclusion from the wrong formula.
De Moivre's most notable achievement in probability was the discovery of the first instance of central limit theorem, by which he was able to approximate the binomial distribution with the normal distribution. [16]
de Moivre's theorem may be: de Moivre's formula, a trigonometric identity; Theorem of de Moivre–Laplace, a central limit theorem This page was last edited on 28 ...
de Moivre's illustration of his piecewise linear approximation. De Moivre's law first appeared in his 1725 Annuities upon Lives, the earliest known example of an actuarial textbook. [6] Despite the name now given to it, de Moivre himself did not consider his law (he called it a "hypothesis") to be a true description of the pattern of human ...
That cos nx is an n th-degree polynomial in cos x can be seen by observing that cos nx is the real part of one side of de Moivre's formula: + = ( + ). The real part of the other side is a polynomial in cos x and sin x , in which all powers of sin x are even and thus replaceable through the identity cos 2 x + sin 2 x = 1 .