enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Maps of manifolds - Wikipedia

    en.wikipedia.org/wiki/Maps_of_manifolds

    Just as there are various types of manifolds, there are various types of maps of manifolds. PDIFF serves to relate DIFF and PL, and it is equivalent to PL.. In geometric topology, the basic types of maps correspond to various categories of manifolds: DIFF for smooth functions between differentiable manifolds, PL for piecewise linear functions between piecewise linear manifolds, and TOP for ...

  3. Pushforward (differential) - Wikipedia

    en.wikipedia.org/wiki/Pushforward_(differential)

    Suppose that : is a smooth map between smooth manifolds; then the differential of at a point , denoted , is, in some sense, the best linear approximation of near . It can be viewed as a generalization of the total derivative of ordinary calculus.

  4. Sobolev mapping - Wikipedia

    en.wikipedia.org/wiki/Sobolev_mapping

    In mathematics, a Sobolev mapping is a mapping between manifolds which has smoothness in some sense. Sobolev mappings appear naturally in manifold-constrained problems in the calculus of variations and partial differential equations, including the theory of harmonic maps. [1] [2] [3]

  5. Diffeology - Wikipedia

    en.wikipedia.org/wiki/Diffeology

    Recall that a topological manifold is a topological space which is locally homeomorphic to . Differentiable manifolds (also called smooth manifolds) generalize the notion of smoothness on in the following sense: a differentiable manifold is a topological manifold with a differentiable atlas, i.e. a collection of maps from open subsets of to the manifold which are used to "pull back" the ...

  6. Atlas (topology) - Wikipedia

    en.wikipedia.org/wiki/Atlas_(topology)

    Such a manifold is called differentiable. Given a differentiable manifold, one can unambiguously define the notion of tangent vectors and then directional derivatives. If each transition function is a smooth map, then the atlas is called a smooth atlas, and the manifold itself is called smooth.

  7. Smoothness - Wikipedia

    en.wikipedia.org/wiki/Smoothness

    In this way smooth functions between manifolds can transport local data, like vector fields and differential forms, from one manifold to another, or down to Euclidean space where computations like integration are well understood. Preimages and pushforwards along smooth functions are, in general, not manifolds without additional assumptions.

  8. Local diffeomorphism - Wikipedia

    en.wikipedia.org/wiki/Local_diffeomorphism

    A map is a local diffeomorphism if and only if it is a smooth immersion (smooth local embedding) and an open map. The inverse function theorem implies that a smooth map f : X → Y {\displaystyle f:X\to Y} is a local diffeomorphism if and only if the derivative D f x : T x X → T f ( x ) Y {\displaystyle Df_{x}:T_{x}X\to T_{f(x)}Y} is a linear ...

  9. Category:Maps of manifolds - Wikipedia

    en.wikipedia.org/wiki/Category:Maps_of_manifolds

    This category includes maps between manifolds, smooth or otherwise, particularly in geometric topology. Pages in category "Maps of manifolds" The following 14 pages are in this category, out of 14 total.