Search results
Results from the WOW.Com Content Network
An adjacency list representation for a graph associates each vertex in the graph with the collection of its neighbouring vertices or edges. There are many variations of this basic idea, differing in the details of how they implement the association between vertices and collections, in how they implement the collections, in whether they include both vertices and edges or only vertices as first ...
The nested set model is a technique for representing nested set collections (also known as trees or hierarchies) in relational databases.. It is based on Nested Intervals, that "are immune to hierarchy reorganization problem, and allow answering ancestor path hierarchical queries algorithmically — without accessing the stored hierarchy relation".
This simple model is commonly known as the adjacency list model and was introduced by Dr. Edgar F. Codd after initial criticisms surfaced that the relational model could not model hierarchical data. [citation needed] However, the model is only a special case of a general adjacency list for a graph.
Unlike a normal data model such as a Unified Modeling Language (UML) class diagram, which details the relationships between classes, the object graph relates their instances. Object diagrams are subsets of the overall object graph. Object-oriented applications contain complex webs of interrelated objects.
The time complexity of operations in the adjacency list representation can be improved by storing the sets of adjacent vertices in more efficient data structures, such as hash tables or balanced binary search trees (the latter representation requires that vertices are identified by elements of a linearly ordered set, such as integers or ...
For algorithms and data structures not necessarily mentioned here, see list of algorithms and list of data structures. This list of terms was originally derived from the index of that document, and is in the public domain, as it was compiled by a Federal Government employee as part of a Federal Government work. Some of the terms defined are:
Neighbourhoods may be used to represent graphs in computer algorithms, via the adjacency list and adjacency matrix representations. Neighbourhoods are also used in the clustering coefficient of a graph, which is a measure of the average density of its neighbourhoods. In addition, many important classes of graphs may be defined by properties of ...
The article makes the claim: " Besides the space tradeoff, the different data structures also facilitate different operations. It's easy to find all vertices adjacent to a given vertex in an adjacency list representation; you simply read its adjacency list. With an adjacency matrix you must instead scan over an entire row, taking O(n) time.