enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Free neutron decay - Wikipedia

    en.wikipedia.org/wiki/Free_neutron_decay

    For the free neutron, the decay energy for this process (based on the rest masses of the neutron, proton and electron) is 0.782 343 MeV. That is the difference between the rest mass of the neutron and the sum of the rest masses of the products. That difference has to be carried away as kinetic energy.

  3. Neutron radiation - Wikipedia

    en.wikipedia.org/wiki/Neutron_radiation

    Neutron radiation is a form of ionizing radiation that presents as free neutrons. Typical phenomena are nuclear fission or nuclear fusion causing the release of free neutrons, which then react with nuclei of other atoms to form new nuclides —which, in turn, may trigger further neutron radiation.

  4. Neutron - Wikipedia

    en.wikipedia.org/wiki/Neutron

    A fast neutron is a free neutron with a kinetic energy level close to 1 MeV (1.6 × 10 −13 J), hence a speed of ~ 14 000 km/s (~ 5% of the speed of light). They are named fission energy or fast neutrons to distinguish them from lower-energy thermal neutrons, and high-energy neutrons produced in cosmic showers or accelerators.

  5. Neutrino - Wikipedia

    en.wikipedia.org/wiki/Neutrino

    The neutrino [a] was postulated first by Wolfgang Pauli in 1930 to explain how beta decay could conserve energy, momentum, and angular momentum ().In contrast to Niels Bohr, who proposed a statistical version of the conservation laws to explain the observed continuous energy spectra in beta decay, Pauli hypothesized an undetected particle that he called a "neutron", using the same -on ending ...

  6. Gamma-ray burst - Wikipedia

    en.wikipedia.org/wiki/Gamma-ray_burst

    The Space Variable Objects Monitor is a small X-ray telescope satellite for studying the explosions of massive stars by analysing the resulting gamma-ray bursts, developed by China National Space Administration (CNSA), Chinese Academy of Sciences (CAS) and the French Space Agency , [45] launched on 22 June 2024 (07:00:00 UTC).

  7. Neutron star - Wikipedia

    en.wikipedia.org/wiki/Neutron_star

    In neutron stars, the neutron drip is the transition point where nuclei become so neutron-rich that they can no longer hold additional neutrons, leading to a sea of free neutrons being formed. The sea of neutrons formed after neutron drip provides additional pressure support, which helps maintain the star's structural integrity and prevents ...

  8. Proton decay - Wikipedia

    en.wikipedia.org/wiki/Proton_decay

    Free neutrons—those not inside an atomic nucleus—are already known to decay into protons (and an electron and an antineutrino) in a process called beta decay. Free neutrons have a half-life of 10 minutes (610.2 ± 0.8 s) [17] due to the weak interaction. Neutrons bound inside a nucleus have an immensely longer half-life – apparently as ...

  9. Strange matter - Wikipedia

    en.wikipedia.org/wiki/Strange_matter

    In particle physics and astrophysics, the term 'strange matter' is used in two different contexts, one broader and the other more specific and hypothetical: [1] [2]. In the broader context, our current understanding of the laws of nature predicts that strange matter could be created when nuclear matter (made of protons and neutrons) is compressed beyond a critical density.