enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Thermodynamic state - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_state

    For non-equilibrium thermodynamics, a suitable set of identifying state variables includes some macroscopic variables, for example a non-zero spatial gradient of temperature, that indicate departure from thermodynamic equilibrium. Such non-equilibrium identifying state variables indicate that some non-zero flow may be occurring within the ...

  3. Thermodynamic system - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_system

    Equilibrium thermodynamic processes may involve fluxes but these must have ceased by the time a thermodynamic process or operation is complete bringing a system to its eventual thermodynamic state. Non-equilibrium thermodynamics allows its state variables to include non-zero fluxes, which describe transfers of mass or energy or entropy between ...

  4. State function - Wikipedia

    en.wikipedia.org/wiki/State_function

    In the thermodynamics of equilibrium, a state function, function of state, or point function for a thermodynamic system is a mathematical function relating several state variables or state quantities (that describe equilibrium states of a system) that depend only on the current equilibrium thermodynamic state of the system [1] (e.g. gas, liquid, solid, crystal, or emulsion), not the path which ...

  5. Thermodynamic cycle - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_cycle

    Entropy is a state function and is defined in an absolute sense through the Third Law of Thermodynamics as S = ∫ 0 T d Q r e v T {\displaystyle S=\int _{0}^{T}{dQ_{rev} \over T}} where a reversible path is chosen from absolute zero to the final state, so that for an isothermal reversible process

  6. Thermodynamic diagrams - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_diagrams

    The path or series of states through which a system passes from an initial equilibrium state to a final equilibrium state [1] and can be viewed graphically on a pressure-volume (P-V), pressure-temperature (P-T), and temperature-entropy (T-s) diagrams. [2] There are an infinite number of possible paths from an initial point to an end point in a ...

  7. Thermodynamic equilibrium - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equilibrium

    Classical thermodynamics deals with states of dynamic equilibrium.The state of a system at thermodynamic equilibrium is the one for which some thermodynamic potential is minimized (in the absence of an applied voltage), [2] or for which the entropy (S) is maximized, for specified conditions.

  8. Isentropic process - Wikipedia

    en.wikipedia.org/wiki/Isentropic_process

    An example of such an exchange would be an isentropic expansion or compression that entails work done on or by the flow. For an isentropic flow, entropy density can vary between different streamlines. If the entropy density is the same everywhere, then the flow is said to be homentropic.

  9. State postulate - Wikipedia

    en.wikipedia.org/wiki/State_postulate

    The state postulate is a term used in thermodynamics that defines the given number of properties to a thermodynamic system in a state of equilibrium. It is also sometimes referred to as the state principle. [1] The state postulate allows a finite number of properties to be specified in order to fully describe a state of thermodynamic equilibrium.