Search results
Results from the WOW.Com Content Network
The following outline is provided as an overview of and topical guide to robotics: . Robotics is a branch of mechanical engineering, electrical engineering and computer science that deals with the design, construction, operation, and application of robots, as well as computer systems for their control, sensory feedback, and information processing.
For example, a robot's lowest layer could be "avoid an object". The second layer would be "wander around", which runs beneath the third layer "explore the world". Because a robot must have the ability to "avoid objects" in order to "wander around" effectively, the subsumption architecture creates a system in which the higher layers utilize the ...
Kinematic diagram of Cartesian (coordinate) robot A plotter is a type of Cartesian coordinate robot.. A Cartesian coordinate robot (also called linear robot) is an industrial robot whose three principal axes of control are linear (i.e. they move in a straight line rather than rotate) and are at right angles to each other. [1]
2005 DARPA Grand Challenge winner Stanley performed SLAM as part of its autonomous driving system. A map generated by a SLAM Robot. Simultaneous localization and mapping (SLAM) is the computational problem of constructing or updating a map of an unknown environment while simultaneously keeping track of an agent's location within it.
In robotics, robot kinematics applies geometry to the study of the movement of multi-degree of freedom kinematic chains that form the structure of robotic systems. [ 1 ] [ 2 ] The emphasis on geometry means that the links of the robot are modeled as rigid bodies and its joints are assumed to provide pure rotation or translation .
Visual odometry is the process of determining equivalent odometry information using sequential camera images to estimate the distance traveled. Visual odometry allows for enhanced navigational accuracy in robots or vehicles using any type of locomotion on any [citation needed] surface.
Some books such as Introduction to Robotics: Mechanics and Control (3rd Edition) [7] use modified (proximal) DH parameters. The difference between the classic (distal) DH parameters and the modified DH parameters are the locations of the coordinates system attachment to the links and the order of the performed transformations.
In robotics, a robotic paradigm is a mental model of how a robot operates. A robotic paradigm can be described by the relationship between the three basic elements of robotics: Sensing, Planning, and Acting. It can also be described by how sensory data is processed and distributed through the system, and where decisions are made.